Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5975, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749103

RESUMO

The energy mix transition has accelerated the need for more accurate emissions reporting throughout the petroleum supply chain. Despite increasing environmental regulations and pressure for emissions disclosure, the low resolution of existing carbon footprint assessment does not account for the complexity of crude oil trading. The lack of source crude traceability has led to poor visibility into the "well-to-refinery-entrance" carbon intensities at the level of granular pathways between producers and destination markets. Using high-fidelity datasets, optimization algorithms to facilitate supply chain traceability and bottom-up, physics-based emission estimators, we show that the variability in global "well-to-refinery-entrance" carbon intensities at the level of crude trade pathways is significant: 4.2-214.1 kg-CO2-equivalent/barrel with a volume-weighted average of 50.5 kg-CO2-equivalent/barrel. Coupled with oil supply forecasts under 1.5 °C scenarios up to 2050, this variability translates to additional CO2-equivalent savings of 1.5-6.1 Gigatons that could be realized solely by prioritizing low-carbon supply chain pathways without other capital-intensive mitigation measures.

2.
Nat Commun ; 13(1): 7853, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36543764

RESUMO

A pressing challenge facing the aviation industry is to aggressively reduce greenhouse gas emissions in the face of increasing demand for aviation fuels. Climate goals such as carbon-neutral growth from 2020 onwards require continuous improvements in technology, operations, infrastructure, and most importantly, reductions in aviation fuel life cycle emissions. The Carbon Offsetting Scheme for International Aviation of the International Civil Aviation Organization provides a global market-based measure to group all possible emissions reduction measures into a joint program. Using a bottom-up, engineering-based modeling approach, this study provides the first estimates of life cycle greenhouse gas emissions from petroleum jet fuel on regional and global scales. Here we show that not all petroleum jet fuels are the same as the country-level life cycle emissions of petroleum jet fuels range from 81.1 to 94.8 gCO2e MJ-1, with a global volume-weighted average of 88.7 gCO2e MJ-1. These findings provide a high-resolution baseline against which sustainable aviation fuel and other emissions reduction opportunities can be prioritized to achieve greater emissions reductions faster.


Assuntos
Aviação , Gases de Efeito Estufa , Petróleo , Efeito Estufa , Carbono/análise
3.
Sci Adv ; 7(21)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34020946

RESUMO

Responses to the COVID-19 outbreak resulted in one of the largest short-term decreases in anthropogenic emissions in modern history. To date, there has been no comprehensive assessment of the impact of lockdowns on air quality and human health. Using global satellite observations and ground measurements from 36 countries in Europe, North America, and East Asia, we find that lockdowns led to reductions in NO2 concentrations globally, resulting in ~32,000 avoided premature mortalities, including ~21,000 in China. However, we do not find corresponding reductions in PM2.5 and ozone globally. Using satellite measurements, we show that the disconnect between NO2 and ozone changes stems from local chemical regimes. The COVID-related lockdowns demonstrate the need for targeted air quality policies to reduce the global burden of air pollution, especially related to secondary pollutants.


Assuntos
COVID-19/epidemiologia , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Material Particulado/efeitos adversos , Poluição do Ar/efeitos adversos , COVID-19/patologia , COVID-19/virologia , China/epidemiologia , Exposição Ambiental , Europa (Continente)/epidemiologia , Ásia Oriental/epidemiologia , Humanos , América do Norte/epidemiologia , Ozônio , SARS-CoV-2/patogenicidade
4.
Environ Sci Technol Lett ; 7(6): 371-375, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32596410

RESUMO

The radiative forcing resulting from condensation clouds behind aircraft ("contrails") has been estimated to have an effect on the same order of magnitude as all accumulated aviation-attributable CO2. However, contrail impacts are highly uncertain, with estimates of total contrail-driven forcing made in the past five years varying by a factor of 4. Two of the key driving uncertainties are the crystal shape and size, which describe the cloud optical properties. Here we combine data from high-fidelity scattering simulations of single crystals with in situ measurement of bulk contrail ice properties to bound the range of realistic optical properties for contrail ice. Accounting for the full range of measured contrail microphysical evolution pathways, and for a given estimate of contrail coverage, we find that the global net radiative forcing due to contrails in 2015 is between 8.6 and 10.7 mW/m2. Relative to the midpoint, this uncertainty range is less than one-quarter of that recently reported in the literature. This reduction in uncertainty is primarily due to the elimination of spheres as a plausible long-term shape for contrail ice, leaving questions of contrail coverage and optical depth as the primary causes of contrail forcing uncertainty.

5.
Environ Sci Technol ; 53(3): 1364-1373, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30620574

RESUMO

Black carbon (BC) emissions from aircraft engines lead to an increase in the atmospheric burden of fine particulate matter (PM2.5). Exposure to PM2.5 from sources, including aviation, is associated with an increased risk of premature mortality, and BC suspended in the atmosphere has a warming impact on the climate. BC particles emitted from aircraft also serve as nuclei for contrail ice particles, which are a major component of aviation's climate impact. To facilitate the evaluation of these impacts, we have developed a method to estimate BC mass and number emissions at the engine exit plane, referred to as the Smoke Correlation for Particle Emissions-CAEP11 (SCOPE11). We use a data set consisting of SN-BC mass concentration pairs, collected using certification-compliant measurement systems, to develop a new relationship between smoke number (SN) and BC mass concentration. In addition, we use a complementary data set to estimate measurement system loss correction factors and particle geometric mean diameters to estimate BC number emissions at the engine exit plane. Using this method, we estimate global BC emissions from aircraft landing and takeoff (LTO) operations for 2015 to be 0.74 Gg/year (95% CI = 0.64-0.84) and 2.85 × 1025 particles/year (95% CI = 1.86-4.49 × 1025).


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Aeronaves , Carbono , Material Particulado , Fuligem
6.
Environ Sci Technol ; 48(12): 6561-8, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24870412

RESUMO

We quantify the economic and environmental benefits of designing U.S. light-duty vehicles (LDVs) to attain higher fuel economy by utilizing higher octane (98 RON) gasoline. We use engine simulations, a review of experimental data, and drive cycle simulations to estimate the reduction in fuel consumption associated with using higher-RON gasoline in individual vehicles. Lifecycle CO2 emissions and economic impacts for the U.S. LDV fleet are estimated based on a linear-programming refinery model, a historically calibrated fleet model, and a well-to-wheels emissions analysis. We find that greater use of high-RON gasoline in appropriately tuned vehicles could reduce annual gasoline consumption in the U.S. by 3.0-4.4%. Accounting for the increase in refinery emissions from production of additional high-RON gasoline, net CO2 emissions are reduced by 19-35 Mt/y in 2040 (2.5-4.7% of total direct LDV CO2 emissions). For the strategies studied, the annual direct economic benefit is estimated to be $0.4-6.4 billion in 2040, and the annual net societal benefit including the social cost of carbon is estimated to be $1.7-8.8 billion in 2040. Adoption of a RON standard in the U.S. in place of the current antiknock index (AKI) may enable refineries to produce larger quantities of high-RON gasoline.


Assuntos
Meio Ambiente , Gasolina/análise , Gasolina/economia , Octanos/análise , Octanos/economia , Dióxido de Carbono/análise , Dióxido de Carbono/economia , Etanol/análise , Modelos Teóricos , Veículos Automotores/economia , Campos de Petróleo e Gás , Estados Unidos , Emissões de Veículos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...