Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 15(5): 937-946, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30644495

RESUMO

We study by coarse-grained molecular-dynamics simulations the liquid flow in a slit channel with the inner walls coated by semiflexible polymer brushes. The distance between walls is close enough such that polymers grafted to opposing walls interact among each other and form bundles across the channel in poor solvent conditions. The solvent is simulated explicitly, including particles that fill the interior of the channel. The system is studied in equilibrium and under flow, by applying a constant body force on each particle of the system. A non-linear relation between external force and flow rate is observed, for a particular set of parameters. This non-linear response is linked to a morphological change of the polymer brushes. For large enough forces, the bundle structures formed across the channel break as the chains lean in the direction of the flow, and clear the middle of the channel. This morphological alteration of the polymer configurations translates in a sudden increase in the flow rate, acting as a pressure-responsive gate. The relation between flow and external force is investigated for various parameters, such as grafting density, quality of the solvent and polymer bending rigidity. We observe a non-monotonic dependence of the flow as a function of the polymer rigidity, and find an optimum value for the persistence length. We also find that the force threshold at which the morphological changes happen in the polymer brush, depends linearly on the grafting density. These findings can lead to new flow control techniques in micro and nano-fluidic devices.

2.
Langmuir ; 33(40): 10753-10763, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28892398

RESUMO

We study the influence of chain stiffness on droplet flow in a nanochannel, coated with semiflexible hydrophobic polymers by means of nonequilibrium molecular dynamics simulations. The studied system is then a moving droplet in the slit channel, coexisting with its vapor and subjected to periodic boundary conditions in the flow direction. The polymer chains, grafted by the terminal bead to the confining walls, are described by a coarse-grained model that accounts for chain connectivity, excluded volume interactions and local chain stiffness. The rheological, frictional and dynamical properties of the brush are explored over a wide range of persistence lengths. We find a rich behavior of polymer conformations and concomitant changes in the friction properties over the wide range of studied polymer stiffnesses. A rapid decrease in the droplet velocity was observed as the rigidity of the chains is increased for polymers whose persistence length is smaller than their contour length. We find a strong relation between the internal dynamics of the brush and the droplet transport properties, which could be used to tailor flow properties by surface functionalization. The monomers of the brush layer, under the droplet, present a collective "treadmill belt" like dynamics which can only be present due the existence of grafted chains. We describe its changes in spatial extension upon variations of polymer stiffness, with bidimensional velocity and density profiles. The deformation of the polymer brushes due to the presence of the droplet is analyzed in detail. Lastly, the droplet-gas interaction is studied by varying the liquid to gas ratio, observing a 16% speed increase for droplets that flow close to each other, compared to a train of droplets that present a large gap between consecutive droplets.

3.
Soft Matter ; 11(27): 5473-84, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26061866

RESUMO

We performed molecular dynamics simulations to study the equilibrium and flow properties of a liquid in a nano-channel with confining surfaces coated with a layer of grafted semiflexible polymers. The coverage spans a wide range of grafting densities from essentially isolated chains to dense brushes. The end-grafted polymers were described by a bead spring model with a harmonic potential to include the bond stiffness of the chains. We varied the rigidity of the chains, from fully flexible polymers to rigid rods, in which the configurational entropy of the chains is negligible. The brush-liquid interaction was tuned to obtain a super-hydrophobic channel, in which the liquid did not penetrate the polymer brush, giving rise to a Cassie-Baxter state. Equilibrium properties such as brush height and bending energy were measured, varying the grafting density and the stiffness of the polymers. We also studied the characteristics of the brush-liquid interface and the morphology of the polymer chains supporting the liquid for different bending rigidities. Non-equilibrium simulations were performed, moving the walls of the channel in opposite directions at constant speed, obtaining a Couette velocity profile in the bulk liquid. The molecular degrees of freedom of the polymers were studied as a function of the Weissenberg number. Also, the violation of the no-slip boundary condition and the slip properties were analyzed as a function of the shear rate, grafting density and bending stiffness. At high grafting densities, a finite slip length independent of the shear rate or bending constant was found, while at low grafting densities a very interesting non-monotonic dependence on the bending constant is observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA