Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 2890, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001872

RESUMO

Compensating in flow cytometry is an unavoidable challenge in the data analysis of fluorescence-based flow cytometry. Even the advent of spectral cytometry cannot circumvent the spillover problem, with spectral unmixing an intrinsic part of such systems. The calculation of spillover coefficients from single-color controls has remained essentially unchanged since its inception, and is increasingly limited in its ability to deal with high-parameter flow cytometry. Here, we present AutoSpill, an alternative method for calculating spillover coefficients. The approach combines automated gating of cells, calculation of an initial spillover matrix based on robust linear regression, and iterative refinement to reduce error. Moreover, autofluorescence can be compensated out, by processing it as an endogenous dye in an unstained control. AutoSpill uses single-color controls and is compatible with common flow cytometry software. AutoSpill allows simpler and more robust workflows, while reducing the magnitude of compensation errors in high-parameter flow cytometry.

2.
Cytometry A ; 99(1): 103-106, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32881392

RESUMO

Since the advent of microscopy imaging and flow cytometry, there has been an explosion in the number of probes, consisting of a component binding to an analyte and a detectable tag, to mark areas of interest in or on cells and tissue. Probe tags have been created to detect and/or visualize probes. Over time, these probe tags have increased in number. The expansion has resulted in arbitrarily created synonyms of probe tags used in publications and software. The synonyms are problematic for readability of publications, accuracy of text/data mining, and bridging data from multiple platforms, protocols, and databases for Big Data analysis. Development and implementation of a universal language for probe tags will ensure equivalent quality and level of data being reported or extracted for clinical/scientific evaluation as well as help connect data from many platforms. The International Society for Advancement of Cytometry Data Standards Task Force composed of academic scientists and industry hardware/software/reagent manufactures have developed recommendations for a standardized nomenclature for probe tags used in cytometry and microscopy imaging. These recommendations are shared in this technical note in the form of a Probe Tag Dictionary. © 2020 International Society for Advancement of Cytometry.


Assuntos
Microscopia , Software , Bases de Dados Factuais , Citometria de Fluxo , Humanos , Indicadores e Reagentes
3.
Cytometry A ; 99(1): 100-102, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32881398

RESUMO

FCS 3.2 is a revision of the flow cytometry data standard based on a decade of suggested improvements from the community as well as industry needs to capture instrument conditions and measurement features more precisely. The unchanged goal of the standard is to provide a uniform file format that allows files created by one type of acquisition hardware and software to be analyzed by any other type. The standard retains the overall FCS file structure and most features of previous versions, but also contains a few changes that were required to support new types of data and use cases efficiently. These changes are incompatible with existing FCS file readers. Notably, FCS 3.2 supports mixed data types to, for example, allow FCS measurements that are intrinsically integers (e.g., indices or class assignments) or measurements that are commonly captured as integers (e.g., time ticks) to be more represented as integer values, while capturing other measurements as floating-point values in the same FCS data set. In addition, keywords explicitly specifying dyes, detectors, and analytes were added to avoid having to extract those heuristically and unreliably from measurement names. Types of measurements were formalized, several keywords added, others removed, or deprecated, and various aspects of the specification were clarified. A reference implementation of the cyclic redundancy check (CRC) calculation is provided in two programming languages since a correct CRC implementation was problematic for many vendors. © 2020 International Society for Advancement of Cytometry.


Assuntos
Armazenamento e Recuperação da Informação , Software , Citometria de Fluxo
4.
Nat Commun ; 10(1): 5415, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31780669

RESUMO

Accurate and comprehensive extraction of information from high-dimensional single cell datasets necessitates faithful visualizations to assess biological populations. A state-of-the-art algorithm for non-linear dimension reduction, t-SNE, requires multiple heuristics and fails to produce clear representations of datasets when millions of cells are projected. We develop opt-SNE, an automated toolkit for t-SNE parameter selection that utilizes Kullback-Leibler divergence evaluation in real time to tailor the early exaggeration and overall number of gradient descent iterations in a dataset-specific manner. The precise calibration of early exaggeration together with opt-SNE adjustment of gradient descent learning rate dramatically improves computation time and enables high-quality visualization of large cytometry and transcriptomics datasets, overcoming limitations of analysis tools with hard-coded parameters that often produce poorly resolved or misleading maps of fluorescent and mass cytometry data. In summary, opt-SNE enables superior data resolution in t-SNE space and thereby more accurate data interpretation.


Assuntos
Algoritmos , Biologia Computacional , Visualização de Dados , Conjuntos de Dados como Assunto , Citometria de Fluxo , Perfilação da Expressão Gênica , Animais , Automação , Humanos , Aprendizado de Máquina , Camundongos , Dinâmica não Linear , Análise de Componente Principal
5.
Cytometry A ; 93(11): 1087-1091, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30244531

RESUMO

We demonstrate improved methods for making valid and accurate comparisons of fluorescence measurement capabilities among instruments tested at different sites and times. We designed a suite of measurements and automated data processing methods to obtain consistent objective results and applied them to a selection of 23 instruments at nine sites to provide a range of instruments as well as multiple instances of similar instruments. As far as we know, this study represents the most accurate methods and results so far demonstrated for this purpose. The first component of the study reporting improved methods for photoelectron scale (Spe) evaluations, which was published previously (Parks, El Khettabi, Chase, Hoffman, Perfetto, Spidlen, Wood, Moore, and Brinkman: Cytometry A 91 (2017) 232-249). Those results which were within themselves are not sufficient for instrument comparisons, so here, we use the Spe scale results for the 23 cytometers and combine them with additional information from the analysis suite to obtain the metrics actually needed for instrument evaluations and comparisons. We adopted what we call the 2+2SD limit of resolution as a maximally informative metric, for evaluating and comparing dye measurement sensitivity among different instruments and measurement channels. Our results demonstrate substantial differences among different classes of instruments in both dye response and detection sensitivity and some surprisingly large differences among similar instruments, even among instruments with nominally identical configurations. On some instruments, we detected defective measurement channels needing service. The system can be applied in shared resource laboratories and other facilities as an aspect of quality assurance, and accurate instrument comparisons can be valuable for selecting instruments for particular purposes and for making informed instrument acquisition decisions. An institutionally supported program could serve the cytometry community by facilitating access to materials, and analysis and maintaining an archive of results. © 2018 International Society for Advancement of Cytometry.


Assuntos
Citometria de Fluxo/instrumentação , Citometria de Fluxo/métodos , Calibragem , Humanos
6.
Cytometry B Clin Cytom ; 94(1): 196-198, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27342384

RESUMO

A fundamental tenet of scientific research is that published results including underlying data should be open to independent validation and refutation. Data sharing encourages collaboration, facilitates quality and reduces redundancy in data production. Authors submitting manuscripts to several journals have already adopted the habit of sharing their underlying flow cytometry data by deposition to FlowRepository-a data repository that is jointly supported by the International Society for Advancement of Cytometry, the International Clinical Cytometry Society and the European Society for Clinical Cell Analysis. De-identification is required for publishing data from clinical studies and we discuss ways to satisfy data sharing requirements and patient privacy requirements simultaneously. Scientific communities in the fields of microarray, proteomics, and sequencing have been benefiting from reuse and re-exploration of data in public repositories for over decade. We believe it is time that clinicians follow suit and that de-identified clinical data also become routinely available along with published cytometry-based findings. © 2016 International Clinical Cytometry Society.


Assuntos
Citometria de Fluxo/métodos , Humanos , Disseminação de Informação/métodos
7.
Cytometry A ; 91(3): 232-249, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28160404

RESUMO

We developed a fully automated procedure for analyzing data from LED pulses and multilevel bead sets to evaluate backgrounds and photoelectron scales of cytometer fluorescence channels. The method improves on previous formulations by fitting a full quadratic model with appropriate weighting and by providing standard errors and peak residuals as well as the fitted parameters themselves. Here we describe the details of the methods and procedures involved and present a set of illustrations and test cases that demonstrate the consistency and reliability of the results. The automated analysis and fitting procedure is generally quite successful in providing good estimates of the Spe (statistical photoelectron) scales and backgrounds for all the fluorescence channels on instruments with good linearity. The precision of the results obtained from LED data is almost always better than that from multilevel bead data, but the bead procedure is easy to carry out and provides results good enough for most purposes. Including standard errors on the fitted parameters is important for understanding the uncertainty in the values of interest. The weighted residuals give information about how well the data fits the model, and particularly high residuals indicate bad data points. Known photoelectron scales and measurement channel backgrounds make it possible to estimate the precision of measurements at different signal levels and the effects of compensated spectral overlap on measurement quality. Combining this information with measurements of standard samples carrying dyes of biological interest, we can make accurate comparisons of dye sensitivity among different instruments. Our method is freely available through the R/Bioconductor package flowQB. © 2017 International Society for Advancement of Cytometry.


Assuntos
Citometria de Fluxo/métodos , Modelos Teóricos , Imagem Óptica/métodos , Calibragem , Citometria de Fluxo/estatística & dados numéricos , Análise dos Mínimos Quadrados
8.
Cytometry A ; 89(5): 461-71, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26990501

RESUMO

Modern flow cytometry systems can be coupled to plate readers for high-throughput acquisition. These systems allow hundreds of samples to be analyzed in a single day. Quality control of the data remains challenging, however, and is further complicated when a large number of parameters is measured in an experiment. Our examination of 29,228 publicly available FCS files from laboratories worldwide indicates 13.7% have a fluorescence anomaly. In particular, fluorescence measurements for a sample over the collection time may not remain stable due to fluctuations in fluid dynamics; the impact of instabilities may differ between samples and among parameters. Therefore, we hypothesized that tracking cell populations (which represent a summary of all parameters) in centered log ratio space would provide a sensitive and consistent method of quality control. Here, we present flowClean, an algorithm to track subset frequency changes within a sample during acquisition, and flag time periods with fluorescence perturbations leading to the emergence of false populations. Aberrant time periods are reported as a new parameter and added to a revised data file, allowing users to easily review and exclude those events from further analysis. We apply this method to proof-of-concept datasets and also to a subset of data from a recent vaccine trial. The algorithm flags events that are suspicious by visual inspection, as well as those showing more subtle effects that might not be consistently flagged by investigators reviewing the data manually, and out-performs the current state-of-the-art. flowClean is available as an R package on Bioconductor, as a module on the free-to-use GenePattern web server, and as a plugin for FlowJo X. © 2016 International Society for Advancement of Cytometry.


Assuntos
Algoritmos , Citometria de Fluxo/normas , Rastreamento de Células/instrumentação , Rastreamento de Células/métodos , Conjuntos de Dados como Assunto , Fluorescência , Humanos , Controle de Qualidade
9.
Cytometry A ; 87(7): 683-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25976062

RESUMO

The lack of software interoperability with respect to gating has traditionally been a bottleneck preventing the use of multiple analytical tools and reproducibility of flow cytometry data analysis by independent parties. To address this issue, ISAC developed Gating-ML, a computer file format to encode and interchange gates. Gating-ML 1.5 was adopted and published as an ISAC Candidate Recommendation in 2008. Feedback during the probationary period from implementors, including major commercial software companies, instrument vendors, and the wider community, has led to a streamlined Gating-ML 2.0. Gating-ML has been significantly simplified and therefore easier to support by software tools. To aid developers, free, open source reference implementations, compliance tests, and detailed examples are provided to stimulate further commercial adoption. ISAC has approved Gating-ML as a standard ready for deployment in the public domain and encourages its support within the community as it is at a mature stage of development having undergone extensive review and testing, under both theoretical and practical conditions.


Assuntos
Biologia Computacional/métodos , Citometria de Fluxo/métodos , Citometria de Fluxo/normas , Software/normas , Padrões de Referência , Reprodutibilidade dos Testes
10.
Cytometry A ; 87(1): 86-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25407887

RESUMO

Identifying homogenous sets of cell populations in flow cytometry is an important process for sorting and selecting populations of interests for further data acquisition and analysis. Many computational methods are now available to automate this process, with several algorithms partitioning cells based on high-dimensional separation versus the traditional pairwise two-dimensional visualization approach of manual gating. ISAC's classification results file format was developed to exchange the results of both manual gating and algorithmic classification approaches in a standardized way based on per event based classifications, including the potential for soft classifications expressed as the probability of an event being a member of a class. © 2014 International Society for Advancement of Cytometry.


Assuntos
Processamento Eletrônico de Dados/normas , Citometria de Fluxo/normas , Software/normas , Algoritmos , Humanos , Guias de Prática Clínica como Assunto
11.
PLoS Comput Biol ; 9(12): e1003365, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24363631

RESUMO

Flow cytometry bioinformatics is the application of bioinformatics to flow cytometry data, which involves storing, retrieving, organizing, and analyzing flow cytometry data using extensive computational resources and tools. Flow cytometry bioinformatics requires extensive use of and contributes to the development of techniques from computational statistics and machine learning. Flow cytometry and related methods allow the quantification of multiple independent biomarkers on large numbers of single cells. The rapid growth in the multidimensionality and throughput of flow cytometry data, particularly in the 2000s, has led to the creation of a variety of computational analysis methods, data standards, and public databases for the sharing of results. Computational methods exist to assist in the preprocessing of flow cytometry data, identifying cell populations within it, matching those cell populations across samples, and performing diagnosis and discovery using the results of previous steps. For preprocessing, this includes compensating for spectral overlap, transforming data onto scales conducive to visualization and analysis, assessing data for quality, and normalizing data across samples and experiments. For population identification, tools are available to aid traditional manual identification of populations in two-dimensional scatter plots (gating), to use dimensionality reduction to aid gating, and to find populations automatically in higher dimensional space in a variety of ways. It is also possible to characterize data in more comprehensive ways, such as the density-guided binary space partitioning technique known as probability binning, or by combinatorial gating. Finally, diagnosis using flow cytometry data can be aided by supervised learning techniques, and discovery of new cell types of biological importance by high-throughput statistical methods, as part of pipelines incorporating all of the aforementioned methods. Open standards, data, and software are also key parts of flow cytometry bioinformatics. Data standards include the widely adopted Flow Cytometry Standard (FCS) defining how data from cytometers should be stored, but also several new standards under development by the International Society for Advancement of Cytometry (ISAC) to aid in storing more detailed information about experimental design and analytical steps. Open data is slowly growing with the opening of the CytoBank database in 2010 and FlowRepository in 2012, both of which allow users to freely distribute their data, and the latter of which has been recommended as the preferred repository for MIFlowCyt-compliant data by ISAC. Open software is most widely available in the form of a suite of Bioconductor packages, but is also available for web execution on the GenePattern platform.


Assuntos
Biologia Computacional , Citometria de Fluxo , Separação Celular
12.
Source Code Biol Med ; 8(1): 14, 2013 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23822732

RESUMO

BACKGROUND: Traditional flow cytometry data analysis is largely based on interactive and time consuming analysis of series two dimensional representations of up to 20 dimensional data. Recent technological advances have increased the amount of data generated by the technology and outpaced the development of data analysis approaches. While there are advanced tools available, including many R/BioConductor packages, these are only accessible programmatically and therefore out of reach for most experimentalists. GenePattern is a powerful genomic analysis platform with over 200 tools for analysis of gene expression, proteomics, and other data. A web-based interface provides easy access to these tools and allows the creation of automated analysis pipelines enabling reproducible research. RESULTS: In order to bring advanced flow cytometry data analysis tools to experimentalists without programmatic skills, we developed the GenePattern Flow Cytometry Suite. It contains 34 open source GenePattern flow cytometry modules covering methods from basic processing of flow cytometry standard (i.e., FCS) files to advanced algorithms for automated identification of cell populations, normalization and quality assessment. Internally, these modules leverage from functionality developed in R/BioConductor. Using the GenePattern web-based interface, they can be connected to build analytical pipelines. CONCLUSIONS: GenePattern Flow Cytometry Suite brings advanced flow cytometry data analysis capabilities to users with minimal computer skills. Functionality previously available only to skilled bioinformaticians is now easily accessible from a web browser.

15.
Curr Protoc Cytom ; Chapter 10: Unit 10.18, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22752950

RESUMO

FlowRepository.org is a Web-based flow cytometry data repository provided by the International Society for Advancement of Cytometry (ISAC). It supports storage, annotation, analysis, and sharing of flow cytometry datasets. A fundamental tenet of scientific research is that published results should be open to independent validation and refutation. With FlowRepository, researchers can annotate their datasets in compliance with the Minimum Information about a Flow Cytometry Experiment (MIFlowCyt) standard, thus greatly facilitating third-party interpretation of their data. In this unit, we will mainly focus on the deposition, sharing, and annotation of flow cytometry data.


Assuntos
Bases de Dados Factuais , Arquivamento , Citometria de Fluxo/métodos , Fidelidade a Diretrizes , Internacionalidade , Internet , Sociedades Científicas , Armazenamento e Recuperação da Informação , Manuscritos como Assunto
16.
Cytometry A ; 81(6): 523-6, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22278913

RESUMO

The Flow Cytometry Standard (FCS) format was developed back in 1984. Since then, FCS became the standard file format supported by all flow cytometry software and hardware vendors. Over the years, updates were incorporated to adapt to technological advancements in both flow cytometry and computing technologies. However, flexibility in how data may be stored in FCS has led to implementation difficulties for instrument vendors and third party software developers. In this technical note, we are providing implementation guidance and examples related to FCS 3.1, the latest version of the standard. By publishing this text, we intend to prevent potential compatibility issues that could be faced when implementing the FCS spillover and preferred display keywords that have arisen during discussions among some implementers.


Assuntos
Arquivamento/normas , Citometria de Fluxo/normas , Software , Processamento Eletrônico de Dados , Citometria de Fluxo/instrumentação
17.
BMC Res Notes ; 4: 50, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21385382

RESUMO

BACKGROUND: Flow cytometry is a widely used analytical technique for examining microscopic particles, such as cells. The Flow Cytometry Standard (FCS) was developed in 1984 for storing flow data and it is supported by all instrument and third party software vendors. However, FCS does not capture the full scope of flow cytometry (FCM)-related data and metadata, and data standards have recently been developed to address this shortcoming. FINDINGS: The Data Standards Task Force (DSTF) of the International Society for the Advancement of Cytometry (ISAC) has developed several data standards to complement the raw data encoded in FCS files. Efforts started with the Minimum Information about a Flow Cytometry Experiment, a minimal data reporting standard of details necessary to include when publishing FCM experiments to facilitate third party understanding. MIFlowCyt is now being recommended to authors by publishers as part of manuscript submission, and manuscripts are being checked by reviewers and editors for compliance. Gating-ML was then introduced to capture gating descriptions - an essential part of FCM data analysis describing the selection of cell populations of interest. The Classification Results File Format was developed to accommodate results of the gating process, mostly within the context of automated clustering. Additionally, the Archival Cytometry Standard bundles data with all the other components describing experiments. Here, we introduce these recent standards and provide the very first example of how they can be used to report FCM data including analysis and results in a standardized, computationally exchangeable form. CONCLUSIONS: Reporting standards and open file formats are essential for scientific collaboration and independent validation. The recently developed FCM data standards are now being incorporated into third party software tools and data repositories, which will ultimately facilitate understanding and data reuse.

18.
Cytometry A ; 77(1): 97-100, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19937951

RESUMO

The flow cytometry data file standard provides the specifications needed to completely describe flow cytometry data sets within the confines of the file containing the experimental data. In 1984, the first Flow Cytometry Standard format for data files was adopted as FCS 1.0. This standard was modified in 1990 as FCS 2.0 and again in 1997 as FCS 3.0. We report here on the next generation flow cytometry standard data file format. FCS 3.1 is a minor revision based on suggested improvements from the community. The unchanged goal of the standard is to provide a uniform file format that allows files created by one type of acquisition hardware and software to be analyzed by any other type.The FCS 3.1 standard retains the basic FCS file structure and most features of previous versions of the standard. Changes included in FCS 3.1 address potential ambiguities in the previous versions and provide a more robust standard. The major changes include simplified support for international characters and improved support for storing compensation. The major additions are support for preferred display scale, a standardized way of capturing the sample volume, information about originality of the data file, and support for plate and well identification in high throughput, plate based experiments. Please see the normative version of the FCS 3.1 specification in Supporting Information for this manuscript (or at http://www.isac-net.org/ in the Current standards section) for a complete list of changes.


Assuntos
Processamento Eletrônico de Dados/normas , Citometria de Fluxo/normas , Biologia Computacional , Processamento Eletrônico de Dados/métodos , Citometria de Fluxo/métodos , Software/normas
19.
BMC Bioinformatics ; 10: 184, 2009 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-19531228

RESUMO

BACKGROUND: Flow cytometry technology is widely used in both health care and research. The rapid expansion of flow cytometry applications has outpaced the development of data storage and analysis tools. Collaborative efforts being taken to eliminate this gap include building common vocabularies and ontologies, designing generic data models, and defining data exchange formats. The Minimum Information about a Flow Cytometry Experiment (MIFlowCyt) standard was recently adopted by the International Society for Advancement of Cytometry. This standard guides researchers on the information that should be included in peer reviewed publications, but it is insufficient for data exchange and integration between computational systems. The Functional Genomics Experiment (FuGE) formalizes common aspects of comprehensive and high throughput experiments across different biological technologies. We have extended FuGE object model to accommodate flow cytometry data and metadata. METHODS: We used the MagicDraw modelling tool to design a UML model (Flow-OM) according to the FuGE extension guidelines and the AndroMDA toolkit to transform the model to a markup language (Flow-ML). We mapped each MIFlowCyt term to either an existing FuGE class or to a new FuGEFlow class. The development environment was validated by comparing the official FuGE XSD to the schema we generated from the FuGE object model using our configuration. After the Flow-OM model was completed, the final version of the Flow-ML was generated and validated against an example MIFlowCyt compliant experiment description. RESULTS: The extension of FuGE for flow cytometry has resulted in a generic FuGE-compliant data model (FuGEFlow), which accommodates and links together all information required by MIFlowCyt. The FuGEFlow model can be used to build software and databases using FuGE software toolkits to facilitate automated exchange and manipulation of potentially large flow cytometry experimental data sets. Additional project documentation, including reusable design patterns and a guide for setting up a development environment, was contributed back to the FuGE project. CONCLUSION: We have shown that an extension of FuGE can be used to transform minimum information requirements in natural language to markup language in XML. Extending FuGE required significant effort, but in our experiences the benefits outweighed the costs. The FuGEFlow is expected to play a central role in describing flow cytometry experiments and ultimately facilitating data exchange including public flow cytometry repositories currently under development.


Assuntos
Biologia Computacional/métodos , Citometria de Fluxo , Armazenamento e Recuperação da Informação/métodos , Linguagens de Programação , Bases de Dados Factuais
20.
BMC Bioinformatics ; 10: 106, 2009 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-19358741

RESUMO

BACKGROUND: Recent advances in automation technologies have enabled the use of flow cytometry for high throughput screening, generating large complex data sets often in clinical trials or drug discovery settings. However, data management and data analysis methods have not advanced sufficiently far from the initial small-scale studies to support modeling in the presence of multiple covariates. RESULTS: We developed a set of flexible open source computational tools in the R package flowCore to facilitate the analysis of these complex data. A key component of which is having suitable data structures that support the application of similar operations to a collection of samples or a clinical cohort. In addition, our software constitutes a shared and extensible research platform that enables collaboration between bioinformaticians, computer scientists, statisticians, biologists and clinicians. This platform will foster the development of novel analytic methods for flow cytometry. CONCLUSION: The software has been applied in the analysis of various data sets and its data structures have proven to be highly efficient in capturing and organizing the analytic work flow. Finally, a number of additional Bioconductor packages successfully build on the infrastructure provided by flowCore, open new avenues for flow data analysis.


Assuntos
Biologia Computacional/métodos , Citometria de Fluxo , Software , Sistemas de Gerenciamento de Base de Dados , Descoberta de Drogas , Armazenamento e Recuperação da Informação , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...