Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1690: 463792, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36681006

RESUMO

Lantipeptides from bacterial sources are increasingly important as biopharmaceuticals because of their broad range of applications. However, the availability of most lantipeptides is low, and systematic approaches for downstream processing of this group of peptides is still lacking. Model-based development for chromatographic separations has proven to be a useful tool for developing reliable purification processes. One important compound of such a model is the adsorption behavior of the components of interest. In ion-exchange chromatography, the adsorption equilibrium between salt and proteins can be described using the steric mass action (SMA) formalism. Beyond, the model parameters may be related to the lanthipeptides physico-chemical properties. In this study, the antiviral lantipeptides labyrinthopeptin A1 and A2, purified from Actinomadura namibiensis culture broth, were characterized for their adsorption behavior in anion-exchange chromatography in the range from pH 5.0-7.4. The experiments necessary to determine the three SMA parameters were chosen in a way to limit the amount of peptides needed. Linear gradient elution was applied successfully to separate A1 and A2 and to determine the characteristic charge νi and the equilibrium constant [Formula: see text] . Batch adsorption experiments using a robotic workstation for high throughput and accuracy provided non-linear adsorption isotherms and the steric factor σi. Labyrinthopeptin A1 and A2 show a very different adsorption behavior even though the fundamental structure of the two peptides is similar. keq of A1 ranging from 0.18 to 0.88 are approximately one order of magnitude smaller than that of A2 ranging from 3.44 to 9.73 indicating the higher affinity of A2 to the stationary phase. At pH 7.0 σ was 1.12 and 0.60 for A1 and A2, respectively which was expected based on the molecular weight of the peptides. The characteristic charge for both peptides was also theoretically estimated from the amino acids involved in electrostatic interactions which was in good agreement with experimental data. Thereby, this work provides an useful approach to estimate SMA parameters based on simple structural information that can be applied early in chromatographic ion-exchange process development for peptides and may help adapting the processes for future designed lanthipeptides.


Assuntos
Peptídeos , Proteínas , Adsorção , Proteínas/química , Cromatografia por Troca Iônica/métodos , Ânions
2.
Biotechnol Bioeng ; 118(1): 7-16, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32844401

RESUMO

Unspecific peroxygenases have attracted interest due to their ability to catalyze the oxygenation of various types of C-H bonds using only hydrogen peroxide as a cosubstrate. Due to the instability of these enzymes at even low hydrogen peroxide concentrations, careful fed-batch addition of the cosubstrate or ideally in situ production is required. While various approaches for hydrogen peroxide addition have been qualitatively assessed, only limited kinetic data concerning enzyme inactivation and peroxide accumulation has been reported so far. To obtain quantitative insights into the kinetics of such a process, a detailed data set for a peroxygenase-catalyzed benzylic hydroxylation coupled with electrochemical hydrogen peroxide production is presented. Based on this data set, we set out to model such an electroenzymatic process. For this, initial velocity data for the benzylic hydroxylation is collected and an extended Ping-Pong-Bi-Bi type rate equation is established, which sufficiently describes the enzyme kinetic. Moreover, we propose an empirical inactivation term based on the collected data set. Finally, we show that the full model does not only describe the process with sufficient accuracy, but can also be used predictively to control hydrogen peroxide feeding rates To limit the concentration of this critical cosubstrate in the system.


Assuntos
Agrocybe/enzimologia , Técnicas Eletroquímicas , Proteínas Fúngicas/química , Oxigenases de Função Mista/química , Modelos Químicos , Catálise
3.
Anal Bioanal Chem ; 412(23): 5593-5600, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32594188

RESUMO

High-performance anion exchange chromatography coupled to pulsed amperometric detection (HPAEC-PAD) was used for developing a method for identifying and quantifying aldehydes in biomass hydrolyzates. This method was optimized to the requirements of HPAEC-PAD in order to allow for a simultaneous determination of aldehydes by respective Cannizzaro alcohols. To this end, sodium hydroxide concentration (0.1 to 5.0 mol/L), temperature (30 to 40 °C), and reaction time (0 to 24 h) were investigated for sufficient and reproducible disproportionation of the biomass-derived aldehydes. The optimized method for aldehyde disproportionation and subsequent measurement are 1 mol/L sodium hydroxide, 40 °C, and 1 h reaction time. The detection limits resulting from this method are lower than 68.55 mg/L and the sensitivity above 0.024 (nC min)/(mg/L) for 3,4-dimethoxybenzaldehyde. Linearity for aldehyde calibration always exceeded 0.98. Thus, HPAEC-PAD analysis allows for the quantification of biomass-derived compounds from all natural polymers and, therefore, it has exemplarily been used to quantify aldehyde concentration of beech wood, orange peel, and algae biomass hydrolyzates. Graphical abstract.


Assuntos
Aldeídos/análise , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia por Troca Iônica/métodos , Álcalis/química , Resinas de Troca Aniônica , Automação , Hidrólise , Limite de Detecção , Soluções
4.
ChemSusChem ; 13(7): 1808-1816, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-31951080

RESUMO

A variety of enzymes can be easily incorporated and overexpressed within Escherichia coli cells by plasmids, making it an ideal chassis for bioelectrosynthesis. It has recently been demonstrated that microbial electrosynthesis (MES) of chiral alcohols is possible by using genetically modified E. coli with plasmid-incorporated and overexpressed enzymes and methyl viologen as mediator for electron transfer. This model system, using NADPH-dependent alcohol dehydrogenase from Lactobacillus brevis to convert acetophenone into (R)-1-phenylethanol, is assessed by using a design of experiment (DoE) approach. Process optimization is achieved with a 2.4-fold increased yield of 94±7 %, a 3.9-fold increased reaction rate of 324±67 µm h-1 , and a coulombic efficiency of up to 68±7 %, while maintaining an excellent enantioselectivity of >99 %. Subsequent scale-up to 1 L by using electrobioreactors under batch and fed-batch conditions increases the titer of (R)-1-phenylethanol to 12.8±2.0 mm and paves the way to further develop E. coli into a universal chassis for MES in a standard biotechnological process environment.


Assuntos
Álcoois/metabolismo , Escherichia coli/metabolismo , Álcool Desidrogenase/metabolismo , Biocatálise , Reatores Biológicos , Lactobacillus/enzimologia , NADP/metabolismo
5.
Biotechnol Prog ; 35(6): e2868, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31207120

RESUMO

The kinetic description of enzyme-catalyzed reactions is a core task in biotechnology and biochemical engineering. In particular, mechanistic kinetic models help from the discovery of the biocatalyst throughout its application. Chemo- or enantioselective enzyme reactions often undergo two alternative pathways for the release of two different products from a central intermediate. For these types of reaction, no explicit reaction equations have been derived so far. To this end, we extend the commonly used Cleland's notation for branched reaction pathways and explicitly derive the rate expressions for two-coupled ordered bi-uni reactions. This mechanism also leads to a ping-pong bi-bi mechanism for a transfer reaction between the two products via the same central intermediate of the reaction system. Using the cross-ligation of benzaldehyde and propanal catalyzed by the thiamine diphosphate-dependent enzyme benzaldehyde lyase from Pseudomonas fluorescens yielding (R)-2-hydroxy-1-phenylbutan-1-one as a case study, we performed model-based experimental analysis to show that such a reaction mechanism can be modeled mechanistically and leads to reasonable kinetic parameters.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/química , Biotecnologia , Enzimas/química , Catálise , Cinética , Pseudomonas fluorescens/química , Pseudomonas fluorescens/genética , Estereoisomerismo , Especificidade por Substrato
6.
ChemSusChem ; 12(8): 1631-1634, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30762315

RESUMO

Chiral alcohols constitute important building blocks that can be produced enantioselectively by using nicotinamide adenine dinucleotide (phosphate) [NAD(P)H]-dependent oxidoreductases. For NAD(P)H regeneration, electricity delivers the cheapest reduction equivalents. Enzymatic electrosynthesis suffers from cofactor and enzyme instability, whereas microbial electrosynthesis (MES) exploits whole cells. Here, we demonstrate MES by using resting Escherichia coli as biocatalytic chassis for a production platform towards fine chemicals through electric power. This chassis was exemplified for the synthesis of chiral alcohols by using a NADPH-dependent alcohol dehydrogenase from Lactobacillus brevis for synthesis of (R)-1-phenylethanol from acetophenone. The E. coli strain and growth conditions affected the performance. Maximum yields of (39.4±5.7) % at a coulombic efficiency of (50.5±6.0) % with enantiomeric excess >99 % was demonstrated at a rate of (83.5±13.9) µm h-1 , confirming the potential of MES for synthesis of high-value compounds.

7.
Biotechnol J ; 14(3): e1800183, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29999245

RESUMO

The estimation of kinetic parameters provides valuable insights into the function of biocatalysts and is indispensable in optimizing process conditions. Frequently, kinetic analysis relies on the Michaelis-Menten model derived from initial reaction rates at different initial substrate concentrations. However, by analysis of complete progress curves, more complex kinetic models can be identified. This case study compares two previously published experiments on benzaldehyde lyase-catalyzed self-ligation for the substrates benzaldehyde and 3,5-dimethoxybenzaldehyde to investigate 1) the effect of using different kinetic model equations on the kinetic parameter values, and 2) the effect of using models with and without enzyme inactivation on the kinetic parameter values. These analyses first highlight possible pitfalls in the interpretation of kinetic parameter estimates and second suggest a consistent strategy for data management and validation of kinetic models: First, Michaelis-Menten parameters need to be interpreted with care, complete progress curves are necessary to describe the reaction dynamics, and all experimental conditions have to be taken into consideration when interpreting parameter estimates. Second, complete progress curves should be stored together with the respective reaction conditions, to consistently annotate experimental data and avoid misinterpretation of kinetic parameters. Such a data management strategy is provided by the BioCatNet database system.


Assuntos
Enzimas/química , Aldeído Liases/química , Catálise , Cinética , Modelos Biológicos
8.
Biotechnol Prog ; 34(5): 1081-1092, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29885040

RESUMO

Thiamine diphosphate (ThDP)-dependent enzymes catalyze a broad range of reactions with excellent enantioselectivity. Among these reactions, carboligations of aldehydes are of particular interest since the products, chiral hydroxy ketones, are valuable building blocks in the pharmaceutical industry. However, the substrates, for example, benzaldehyde, inactivate the biocatalysts, for example the ThDP-dependent benzaldehyde lyase from Pseudomonas fluorescens (PfBAL). Because only few mechanistic kinetic models for carboligation and simultaneous inactivation are available today, we quantitatively determined the reaction kinetics and inactivation of the self-carboligation of benzaldehyde yielding the product (R)-benzoin catalyzed by PfBAL directly from progress curves using model-based experimental analysis. Discrimination of several inactivation models identified the substrate-dependent inactivation by benzaldehyde to be significant. Sensitivity analysis and optimal experimental design improved parameter precision significantly, to between 4 and 26% relative standard deviation while maintaining the necessary number of 13 experiments moderate. The developed mechanistic kinetic model will enable to perform a model-based process optimization to circumvent the substrate-dependent enzyme inactivation. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018 © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1081-1092, 2018.


Assuntos
Aldeído Liases/metabolismo , Benzaldeídos/metabolismo , Tiamina Pirofosfato/metabolismo , Biocatálise , Catálise , Cinética , Pseudomonas fluorescens/enzimologia , Estereoisomerismo , Especificidade por Substrato
9.
Anal Bioanal Chem ; 410(1): 57-69, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29184998

RESUMO

In contrast to biochemical reactions, which are often carried out under automatic control and maintained overnight, the automation of chemical analysis is usually neglected. Samples are either analyzed in a rudimentary fashion using in situ techniques, or aliquots are withdrawn and stored to facilitate more precise offline measurements, which can result in sampling and storage errors. Therefore, in this study, we implemented automated reaction control, sampling, and analysis. As an example, the activities of xylanases on xylotetraose and soluble xylan were examined using high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The reaction was performed in HPLC vials inside a temperature-controlled Dionex™ AS-AP autosampler. It was started automatically when the autosampler pipetted substrate and enzyme solution into the reaction vial. Afterwards, samples from the reaction vial were injected repeatedly for 60 min onto a CarboPac™ PA100 column for analysis. Due to the rapidity of the reaction, the analytical method and the gradient elution of 200 mM sodium hydroxide solution and 100 mM sodium hydroxide with 500 mM sodium acetate were adapted to allow for an overall separation time of 13 min and a detection limit of 0.35-1.83 mg/L (depending on the xylooligomer). This analytical method was applied to measure the soluble short-chain products (xylose, xylobiose, xylotriose, xylotetraose, xylopentaose, and longer xylooligomers) that arise during enzymatic hydrolysis. Based on that, the activities of three endoxylanases (EX) were determined as 294 U/mg for EX from Aspergillus niger, 1.69 U/mg for EX from Bacillus stearothermophilus, and 0.36 U/mg for EX from Bacillus subtilis. Graphical abstract Xylanase activity assay automation.


Assuntos
Aspergillus niger/enzimologia , Cromatografia por Troca Iônica/métodos , Endo-1,4-beta-Xilanases/metabolismo , Ensaios Enzimáticos/métodos , Geobacillus stearothermophilus/enzimologia , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia por Troca Iônica/economia , Endo-1,4-beta-Xilanases/análise , Ensaios Enzimáticos/economia , Hidrólise , Limite de Detecção , Fatores de Tempo , Xilanos/metabolismo
10.
Anal Bioanal Chem ; 409(20): 4801-4809, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28573320

RESUMO

To study the interaction of laccases, mediators, and substrates in laccase-mediator systems (LMS), an on-line measurement was developed using high performance anion exchange chromatography equipped with a CarboPac™ PA 100 column coupled to pulsed amperometric detection (HPAEC-PAD). The developed method was optimized for overall chromatographic run time (45 to 120 min) and automated sample drawing. As an example, the Trametes versicolor laccase induced oxidation of 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)-1,3-dihydroxypropane (adlerol) using 1-hydroxybenzotriazole (HBT) as mediator was measured and analyzed on-line. Since the Au electrode of the PAD detects only hydroxyl group containing substances with a limit of detection being in the milligram/liter range, not all products are measureable. Therefore, this method was applied for the quantification of adlerol, and-based on adlerol conversion-for the quantification of the LMS activity at a specific T. versicolor laccase/HBT ratio. The automated chromatographic activity assay allowed for a defined reaction start of all laccase-mediator-system reactions mixtures, and the LMS reaction progress was automatically monitored for 48 h. The automatization enabled an integrated monitoring overnight and over-weekend and minimized all manual errors such as pipetting of solutions accordingly. The activity of the LMS based on adlerol consumption was determined to 0.47 U/mg protein for a laccase/mediator ratio of 1.75 U laccase/g HBT. In the future, the automated method will allow for a fast screening of combinations of laccases, mediators, and substrates which are efficient for lignin modification. In particular, it allows for a fast and easy quantification of the oxidizing activity of an LMS on a lignin-related substrate which is not covered by typical colorimetric laccase assays. ᅟ.


Assuntos
Automação , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia por Troca Iônica/métodos , Lacase/metabolismo , Resinas de Troca Aniônica/química , Espectrofotometria Ultravioleta
11.
Biotechnol Prog ; 33(1): 96-103, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27813314

RESUMO

The reaction medium has major impact on biocatalytic reaction systems and on their economic significance. To allow for tailored medium engineering, thermodynamic phenomena, intrinsic enzyme kinetics, and enzyme-solvent interactions have to be discriminated. To this end, enzyme reaction kinetic modeling was coupled with thermodynamic calculations based on investigations of the alcohol dehydrogenase from Lactobacillus brevis (LbADH) in monophasic water/methyl tert-butyl ether (MTBE) mixtures as a model solvent. Substrate concentrations and substrate thermodynamic activities were varied separately to identify the individual thermodynamic and kinetic effects on the enzyme activity. Microkinetic parameters based on concentration and thermodynamic activity were derived to successfully identify a positive effect of MTBE on the availability of the substrate to the enzyme, but a negative effect on the enzyme performance. In conclusion, thermodynamic activity-based kinetic modeling might be a suitable tool to initially curtail the type of enzyme-solvent interactions and thus, a powerful first step to potentially understand the phenomena that occur in nonconventional media in more detail. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:96-103, 2017.


Assuntos
Álcool Desidrogenase/química , Biocatálise , Solventes/química , Termodinâmica , Cinética , Levilactobacillus brevis/enzimologia , Éteres Metílicos/química , Água/química
12.
Biotechnol Prog ; 33(1): 87-95, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27790860

RESUMO

For the design of bioconversion processes parallel experimentation in microtiter plates is commonly applied to reduce the experimental load, although data accuracy and reproducibility are often reduced. In an effort to quantify the impact of different microscale experimental systems on the estimation of enzyme kinetic parameters from progress curves, we comprehensively evaluated the enzymatic reduction of acetophenone in both open and closed polystyrene and quartz microtiter plates as well as quartz cuvettes. Differences in conversion of up to 50% over time were observed increasing from polystyrene MTPs to quartz MTPs to quartz cuvettes. Initial reaction velocities increased systematically from polystyrene to quartz MTPs and cuvettes. The experimental errors decreased in the same order showing highest experimental error of about 20% in polystyrene. We further evaluated reasons causing the deviations within one system as well as between the systems. The choice of reaction vessel material, temperature effects and substrate cross contaminations in MTPs were shown to be of importance in the experimental results. Although the experimental data differed between the reaction vessels, no distinct trends in estimated kinetic parameters were found. While the microkinetic parameters vary up to an order of magnitude between different systems, the corresponding macrokinetic parameters lie in the same range for all systems varying by 29-118%. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:87-95, 2017.


Assuntos
Acetofenonas/química , Enzimas/química , Cinética , Poliestirenos/química , Quartzo/química
13.
Chembiochem ; 17(21): 2093-2098, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27562499

RESUMO

The development of novel enzymes for biocatalytic processes requires knowledge on substrate profile and selectivity; this can be derived from databases and from publications. Often, these sources lack time-course data for the substrate or product, and an unambiguous link between experiment and enzyme sequence. The lack of integrated, original data hampers the comprehensive analysis of enzyme kinetics and the evaluation of sequence-function relationships. In order to accelerate enzyme engineering, BioCatNet integrates protein sequence, protein structure, and experimental data for a given enzyme family. BioCatNet explicitly assigns the enzyme sequence to the experimental data, which consists of information on reaction conditions and time-course data. BioCatNet facilitates the consistent documentation of reaction conditions, the archiving of time-course data, and the efficient exchange of experimental data among collaborators. Data integration is demonstrated for three case studies by using the TEED (Thiamine diphosphate-dependent Enzymes Engineering Database).


Assuntos
Biocatálise , Bases de Dados de Proteínas , Enzimas/química , Enzimas/metabolismo , Sequência de Aminoácidos , Engenharia de Proteínas
14.
Biotechnol Biofuels ; 9: 7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26752999

RESUMO

BACKGROUND: The valorization of biomass for chemicals and fuels requires efficient pretreatment. One effective strategy involves the pretreatment with ionic liquids which enables enzymatic saccharification of wood within a few hours under mild conditions. This pretreatment strategy is, however, limited by water and the ionic liquids are rather expensive. The scarce understanding of the involved effects, however, challenges the design of alternative pretreatment concepts. This work investigates the multi length-scale effects of pretreatment of wood in 1-ethyl-3-methylimidazolium acetate (EMIMAc) in mixtures with water using spectroscopy, X-ray and neutron scattering. RESULTS: The structure of beech wood is disintegrated in EMIMAc/water mixtures with a water content up to 8.6 wt%. Above 10.7 wt%, the pretreated wood is not disintegrated, but still much better digested enzymatically compared to native wood. In both regimes, component analysis of the solid after pretreatment shows an extraction of few percent of lignin and hemicellulose. In concentrated EMIMAc, xylan is extracted more efficiently and lignin is defunctionalized. Corresponding to the disintegration at macroscopic scale, SANS and XRD show isotropy and a loss of crystallinity in the pretreated wood, but without distinct reflections of type II cellulose. Hence, the microfibril assembly is decrystallized into rather amorphous cellulose within the cell wall. CONCLUSIONS: The molecular and structural changes elucidate the processes of wood pretreatment in EMIMAc/water mixtures. In the aqueous regime with >10.7 wt% water in EMIMAc, xyloglucan and lignin moieties are extracted, which leads to coalescence of fibrillary cellulose structures. Dilute EMIMAc/water mixtures thus resemble established aqueous pretreatment concepts. In concentrated EMIMAc, the swelling due to decrystallinization of cellulose, dissolution of cross-linking xylan, and defunctionalization of lignin releases the mechanical stress to result in macroscopic disintegration of cells. The remaining cell wall constituents of lignin and hemicellulose, however, limit a recrystallization of the solvated cellulose. These pretreatment mechanisms are beyond common pretreatment concepts and pave the way for a formulation of mechanistic requirements of pretreatment with simpler pretreatment liquors.

15.
Biotechnol J ; 11(4): 519-29, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26709721

RESUMO

Microtiter plates (MTP) and automatized techniques are increasingly applied in the field of biotechnology. However, the susceptibility of MTPs to edge effects such as thermal gradients can lead to high variation of measured enzyme activities. In an effort to enhance experimental reliability, to quantify, and to minimize instrument-caused deviations in enzyme kinetics between two MTP-readers, we comprehensively quantified temperature distribution in 96-well MTPs. We demonstrated the robust application of the absorbance dye cresol red as easily applicable temperature indicator in cuvettes and MTPs and determined its accuracy to ±0.16°C. We then quantified temperature distributions in 96-well MTPs revealing temperature deviations over single MTP of up to 2.2°C and different patterns in two commercial devices (BioTek Synergy 4 and Synergy Mx). The obtained liquid temperature was shown to be substantially controlled by evaporation. The temperature-induced enzyme activity variation within MTPs amounted to about 20 %. Activity deviations between MTPs and to those in cuvettes were determined to 40 % due to deviations from the set temperature in MTPs. In conclusion, we propose a better control of experimental conditions in MTPs or alternative experimental systems for reliable determination of kinetic parameters for bioprocess development.


Assuntos
Enzimas/metabolismo , Fenolsulfonaftaleína/análogos & derivados , Reatores Biológicos/microbiologia , Ativação Enzimática , Microbiologia Industrial/métodos , Fenolsulfonaftaleína/química , Temperatura
16.
Bioprocess Biosyst Eng ; 38(12): 2285-313, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26437966

RESUMO

Modern biorefinery concepts focus on lignocellulosic biomass as a feedstock for the production of next generation biofuels and platform chemicals. Lignocellulose is a recalcitrant composite consisting of several tightly packed components which are stuck together by the phenolic polymer lignin hampering the access to the carbohydrate compounds of biomass. Certain saprophytic organisms are able to degrade lignin by the use of an enzymatic cocktail. Laccases have been found to play a major role during lignin degradation and have therefore been intensively researched with regard to potential applications for biomass processing. Within this review, we go along the process chain of a third generation biorefinery and highlight the process steps which could benefit from laccase applications. Laccases can assist the pretreatment of biomass and promote the subsequent enzymatic hydrolysis of cellulose by the oxidative modification of residual lignin on the biomass surface. In combination with mediator molecules laccases are often reported being able to catalyze the depolymerization of lignin. Studies with lignin model compounds confirm the chemical possibility of a laccase-catalyzed cleavage of lignin bonds, but the strong polymerization activity of laccase counters the decomposition of lignin by repolymerizing the degradation products. Therefore, it is a key challenge to shift the catalytic performance of laccase towards lignin cleavage by optimizing the process conditions. Another field of application for laccases is the detoxification of biomass hydrolyzates by the oxidative elimination of lignin-derived phenolics which inhibit hydrolytic enzymes and are toxic for fermentation organisms. This review critically discusses the potential applications for laccases in biorefinery processes and emphasizes the challenges and perspectives which go along with the use of this enzyme for the technical utilization of lignocellulose.


Assuntos
Lacase/metabolismo , Biomassa , Lignina/metabolismo , Polimerização , Especificidade por Substrato
17.
Biotechnol J ; 10(11): 1822-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26257069

RESUMO

pH-shifts are a serious challenge in cofactor dependent biocatalytic oxidoreductions. Therefore, a pH control strategy was developed for reaction systems, where the pH value is not directly measurable. Such a reaction system is the biphasic aqueous-organic reaction system, where the oxidoreduction of hydrophobic substrates in organic solvents is catalysed by hydrogel-immobilized enzymes, and enzyme-coupled cofactor regeneration is accomplished via formate dehydrogenase, leading to a pH-shift. Dual lifetime referencing (DLR), a fluorescence spectroscopic method, was applied for online-monitoring of the pH-value within the immobilizates during the reaction, allowing for a controlled dosage of formic acid. It could be shown that by applying trisodium 8-hydroxypyrene-1, 3, 6-trisulfonate as pH indicator and Ru(II) tris(4, 7-diphenyl-1, 10-phenantroline) (Ru[dpp]) as a reference luminophore the control of the pH-value in a macroscopic gel-bead-stabilized aqueous/organic two phase system in a range of pH 6.5 to 8.0 is possible. An experimental proof of concept could maintain a stable pH of 7.5 ± 0.15 during the reaction for at least 105 h. With these results, it could be shown that DLR is a powerful tool for pH-control within reaction systems with no direct access for conventional pH-measurement.


Assuntos
Biotecnologia/métodos , Enzimas Imobilizadas/metabolismo , Espectrometria de Fluorescência/métodos , Acetofenonas , Corantes Fluorescentes , Concentração de Íons de Hidrogênio , Compostos Organometálicos , Oxirredução
18.
Angew Chem Int Ed Engl ; 52(2): 576-9, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23184415

RESUMO

Emulsions stabilized by stimuli-responsive microgels were used to perform enzyme catalysis. Many substrates are poorly water-soluble, while enzymes naturally require aqueous environments, thus resulting in a two-phase aqueous-organic system. Smart microgels allow an enzyme-catalyzed reaction to be performed in an emulsion that can be broken under controlled conditions to separate the reaction product and to recycle the enzyme (E) and the microgel.


Assuntos
Emulsões/química , Enzimas/química , Géis/química , Biocatálise , Nanoestruturas/química
19.
Biotechnol Biofuels ; 5(1): 77, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-23062284

RESUMO

BACKGROUND: The analysis of cellulose molecular weight distributions by gel permeation chromatography (GPC) is a powerful tool to obtain detailed information on enzymatic cellulose hydrolysis, supporting the development of economically viable biorefinery processes. Unfortunately, due to work and time consuming sample preparation, the measurement of cellulose molecular weight distributions has a limited applicability until now. RESULTS: In this work we present a new method to analyze cellulose molecular weight distributions that does not require any prior cellulose swelling, activation, or derivatization. The cellulose samples were directly dissolved in dimethylformamide (DMF) containing 10-20% (v/v) 1-ethyl-3-methylimidazolium acetate (EMIM Ac) for 60 minutes, thereby reducing the sample preparation time from several days to a few hours. The samples were filtrated 0.2 µm to avoid column blocking, separated at 0.5 mL/min using hydrophilic separation media and were detected using differential refractive index/multi angle laser light scattering (dRI/MALLS). The applicability of this method was evaluated for the three cellulose types Avicel, α-cellulose and Sigmacell. Afterwards, this method was used to measure the changes in molecular weight distributions during the enzymatic hydrolysis of the different untreated and ionic liquid pretreated cellulose substrates. The molecular weight distributions showed a stronger shift to smaller molecular weights during enzymatic hydrolysis using a commercial cellulase preparation for cellulose with lower crystallinity. This was even more pronounced for ionic liquid-pretreated cellulose. CONCLUSIONS: In conclusion, this strongly simplified GPC method for cellulose molecular weight distribution allowed for the first time to demonstrate the influence of cellulose properties and pretreatment on the mode of enzymatic hydrolysis.

20.
Chem Commun (Camb) ; 48(76): 9525-7, 2012 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-22902974

RESUMO

Here we report a simple procedure for generating colorimetric histone deacetylase (HDAC) substrates by solid-phase peptide synthesis based on racemization-free couplings of amino acid chlorides. We demonstrate the applicability of these substrates in HDAC assays.


Assuntos
Colorimetria , Histona Desacetilases/metabolismo , Benzenossulfonatos/síntese química , Benzenossulfonatos/química , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Histona Desacetilases/química , NAD/química , Técnicas de Síntese em Fase Sólida , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...