Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncoimmunology ; 12(1): 2233401, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456982

RESUMO

Mesothelin (MSLN) is an attractive immuno-oncology target, but the development of MSLN-targeting therapies has been impeded by tumor shedding of soluble MSLN (sMSLN), on-target off-tumor activity, and an immunosuppressive tumor microenvironment. We sought to engineer an antibody-based, MSLN-targeted T-cell engager (αMSLN/αCD3) with enhanced ability to discriminate high MSLN-expressing tumors from normal tissue, and activity in the presence of sMSLN. We also studied the in vivo antitumor efficacy of this molecule (NM28-2746) alone and in combination with the multifunctional checkpoint inhibitor/T-cell co-activator NM21-1480 (αPD-L1/α4-1BB). Cytotoxicity and T-cell activation induced by NM28-2746 were studied in co-cultures of peripheral blood mononuclear cells and cell lines exhibiting different levels of MSLN expression, including in the presence of soluble MSLN. Xenotransplant models of human pancreatic cancer were used to study the inhibition of tumor growth and stimulation of T-cell infiltration into tumors induced by NM28-2746 alone and in combination with NM21-1480. The bivalent αMSLN T-cell engager NM28-2746 potently induced T-cell activation and T-cell mediated cytotoxicity of high MSLN-expressing cells but had much lower potency against low MSLN-expressing cells. A monovalent counterpart of NM28-2746 had much lower ability to discriminate high MSLN-expressing from low MSLN-expressing cells. The bivalent molecule retained this discriminant ability in the presence of high concentrations of sMSLN. In xenograft models, NM28-2746 exhibited significant tumor suppressing activity, which was significantly enhanced by combination therapy with NM21-1480. NM28-2746, alone or in combination with NM21-1480, may overcome shortcomings of previous MSLN-targeted immuno-oncology drugs, exhibiting enhanced discrimination of high MSLN-expressing cell activity in the presence of sMSLN.


Assuntos
Antineoplásicos , Mesotelina , Humanos , Proteínas Ligadas por GPI/genética , Linfócitos T , Leucócitos Mononucleares/metabolismo , Antineoplásicos/farmacologia
2.
MAbs ; 15(1): 2215887, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37312434

RESUMO

Upon reformatting of an antibody to single-chain variable fragment format, a region in the former variable/constant domain interface of the heavy chain becomes accessible for preexisting (PE) anti-drug antibody (ADA) binding. The region exposed because of this reformatting contains a previously hidden hydrophobic patch. In this study, mutations are introduced in this region to reduce PE ADA reactivity and concomitantly reduce the hydrophobic patch. To enhance our understanding of the importance of individual residues in this region with respect to PE ADA reactivity, a total of 50 molecules for each of two antibodies against different tumor-associated antigens were designed, produced, and characterized by an arsenal of biophysical methods. The aim was to identify suitable mutations that reduce, or completely eliminate, PE ADA reactivity to variable fragments, without compromising biophysical and pharmacodynamic properties. Computational methods were used to pinpoint key residues to mutate and to evaluate designed molecules in silico, in order to reduce the number of molecules to produce and characterize experimentally. Mutation of two threonine residues, Thr101 and Thr146 in the variable heavy domain, proved to be critical to eliminate PE ADA reactivity. This may have important implications in optimizing early drug development for antibody fragment-based therapeutics.


Assuntos
Desenvolvimento de Medicamentos , Anticorpos de Cadeia Única , Mutação , Anticorpos de Cadeia Única/genética
3.
Oncoimmunology ; 10(1): 2004661, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35844969

RESUMO

Co-stimulatory 4-1BB receptors on tumor-infiltrating T cells are a compelling target for overcoming resistance to immune checkpoint inhibitors, but initial clinical studies of 4-1BB agonist mAbs were accompanied by liver toxicity. We sought to engineer a tri-specific antibody-based molecule that stimulates intratumoral 4-1BB and blocks PD-L1/PD-1 signaling without systemic toxicity and with clinically favorable pharmacokinetics. Recombinant fusion proteins were constructed using scMATCH3 technology and humanized antibody single-chain variable fragments against PD-L1, 4-1BB, and human serum albumin. Paratope affinities were optimized using single amino acid substitutions, leading to design of the drug candidate NM21-1480. Multiple in vitro experiments evaluated pharmacodynamic properties of NM21-1480, and syngeneic mouse tumor models assessed antitumor efficacy and safety of murine analogues. A GLP multiple-dose toxicology study evaluated its safety in non-human primates. NM21-1480 inhibited PD-L1/PD-1 signaling with a potency similar to avelumab, and it potently stimulated 4-1BB signaling only in the presence of PD-L1, while exhibiting an EC50 that was largely independent of PD-L1 density. NM21-1480 exhibited high efficacy for co-activation of pre-stimulated T cells and dendritic cells. In xenograft models in syngeneic mice, NM21-1480 induced tumor regression and tumor infiltration of T cells without causing systemic T-cell activation. A GLP toxicology study revealed no evidence of liver toxicity at doses up to 140 mg/kg, and pharmacokinetic studies in non-human primates suggested a plasma half-life in humans of up to 2 weeks. NM21-1480 has the potential to overcome checkpoint resistance by co-activating tumor-infiltrating lymphocytes without liver toxicity.


Assuntos
Antineoplásicos , Neoplasias , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/farmacologia , Antígeno B7-H1 , Humanos , Imunoterapia , Camundongos , Receptor de Morte Celular Programada 1
4.
Cell Cycle ; 5(11): 1202-7, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16721057

RESUMO

Deregulation of the retinoblastoma (pRB) tumor suppressor pathway associated with aberrant activity of E2F transcription factors is frequently observed in human cancer. Microarray based analyses have revealed a large number of potential downstream mediators of the tumor suppressing activity of pRB, including DEK, a fusion partner of CAN found in a subset of acute myeloid leukaemia (AML) patients carrying a (6; 9) translocation. Here we report that the expression of DEK is under direct control of E2F transcription factors. Chromatin immunoprecipitation assays show that the DEK promoter is bound by endogenous E2F in vivo. The DEK promoter is transactivated by E2F and mutation of E2F binding sites eliminates this effect. Expression levels of DEK in human tumors have been investigated by tissue micro array analysis. We find that DEK is overexpressed in many solid tumors such as colon cancer, larynx cancer, bladder cancer, and melanoma.


Assuntos
Proteínas Cromossômicas não Histona/genética , Fatores de Transcrição E2F/fisiologia , Regulação Neoplásica da Expressão Gênica , Neoplasias/patologia , Proteínas Oncogênicas/genética , Sítios de Ligação , Humanos , Análise em Microsséries , Neoplasias/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...