Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(12): e2215914120, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36917674

RESUMO

How bacterial strains within a complex human microbiota collectively shape intestinal T cell homeostasis is not well understood. Methods that quickly identify effector strains or species that drive specific mucosal T cell phenotypes are needed to define general principles for how the microbiota modulates host immunity. We colonize germ-free mice with defined communities of cultured strains and profile antigen-specific responses directed toward individual strains ex vivo. We find that lamina propria T cells are specific to bacterial strains at the species level and can discriminate between strains of the same species. Ex vivo restimulations consistently identify the strains within complex communities that induce Th17 responses in vivo, providing the potential to shape baseline immune tone via community composition. Using an adoptive transfer model of colitis, we find that lamina propria T cells respond to different bacterial strains in conditions of inflammation versus homeostasis. Collectively, our approach represents a unique method for efficiently predicting the relative impact of individual bacterial strains within a complex community and for parsing microbiota-dependent phenotypes into component fractions.


Assuntos
Intestinos , Microbiota , Humanos , Animais , Camundongos , Intestinos/microbiologia , Mucosa , Bactérias , Linfócitos T CD4-Positivos , Fenótipo , Mucosa Intestinal
2.
Cell Host Microbe ; 30(10): 1481-1498.e5, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36099923

RESUMO

The potential of commensal bacteria to modulate host immunity remains largely uncharacterized, largely due to the vast number of strains that comprise the human gut microbiota. We have developed a screening platform to measure the innate immune responses of myeloid cells to 277 bacterial strains isolated from the gut microbiota of healthy individuals and those with inflammatory bowel diseases. The innate immune responses to gut-derived bacteria are as strong as those toward pathogenic bacteria, and they vary from phylum to strain. Myeloid cells differentially rely upon innate receptors TLR2 or TLR4 to sense taxa, with differential sensing of Bacteroidetes and Proteobacteria that predict in vivo functions. These innate immune responses can be modeled using combinations of up to 8 Toll-like receptor (TLR) agonists. Furthermore, the immunogenicity of strains is stable over time and following fecal microbiota transplantation into new human recipients. Collectively, this high-throughput approach provides an insight into how commensal microorganisms shape innate immune phenotypes.


Assuntos
Microbioma Gastrointestinal , Bactérias , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiologia , Humanos , Imunidade Inata , Receptor 2 Toll-Like , Receptor 4 Toll-Like
3.
Sci Immunol ; 7(73): eabg3208, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857580

RESUMO

Despite being the most abundantly secreted immunoglobulin isotype, the pattern of reactivity of immunoglobulin A (IgA) antibodies toward each individual's own gut commensal bacteria still remains elusive. By colonizing germ-free mice with defined commensal bacteria, we found that the binding specificity of bulk fecal and serum IgA toward resident gut bacteria resolves well at the species level and has modest strain-level specificity. IgA hybridomas generated from lamina propria B cells of gnotobiotic mice showed that most IgA clones recognized a single bacterial species, whereas a small portion displayed cross-reactivity. Orally administered hybridoma-produced IgAs still retained bacterial antigen binding capability, implying the potential for a new class of therapeutic antibodies. Species-specific IgAs had a range of strain specificities. Given the distinctive bacterial species and strain composition found in each individual's gut, our findings suggest the IgA antibody repertoire is shaped uniquely to bind "self" gut bacteria.


Assuntos
Microbioma Gastrointestinal , Animais , Linfócitos B , Células Clonais , Hibridomas , Imunoglobulina A , Camundongos
5.
Sci Rep ; 11(1): 13308, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172783

RESUMO

Gastrointestinal symptoms are common in COVID-19 patients but the nature of the gut immune response to SARS-CoV-2 remains poorly characterized, partly due to the difficulty of obtaining biopsy specimens from infected individuals. In lieu of tissue samples, we measured cytokines, inflammatory markers, viral RNA, microbiome composition, and antibody responses in stool samples from a cohort of 44 hospitalized COVID-19 patients. SARS-CoV-2 RNA was detected in stool of 41% of patients and more frequently in patients with diarrhea. Patients who survived had lower fecal viral RNA than those who died. Strains isolated from stool and nasopharynx of an individual were the same. Compared to uninfected controls, COVID-19 patients had higher fecal levels of IL-8 and lower levels of fecal IL-10. Stool IL-23 was higher in patients with more severe COVID-19 disease, and we found evidence of intestinal virus-specific IgA responses associated with more severe disease. We provide evidence for an ongoing humeral immune response to SARS-CoV-2 in the gastrointestinal tract, but little evidence of overt inflammation.


Assuntos
COVID-19 , Fezes , Microbioma Gastrointestinal , Nasofaringe/virologia , RNA Viral/isolamento & purificação , Idoso , Biomarcadores/metabolismo , COVID-19/epidemiologia , COVID-19/imunologia , Estudos de Coortes , Citocinas/metabolismo , Fezes/virologia , Feminino , Humanos , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque/epidemiologia , SARS-CoV-2/isolamento & purificação
6.
Gastroenterology ; 160(7): 2435-2450.e34, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33676971

RESUMO

BACKGROUND & AIMS: Given that gastrointestinal (GI) symptoms are a prominent extrapulmonary manifestation of COVID-19, we investigated intestinal infection with SARS-CoV-2, its effect on pathogenesis, and clinical significance. METHODS: Human intestinal biopsy tissues were obtained from patients with COVID-19 (n = 19) and uninfected control individuals (n = 10) for microscopic examination, cytometry by time of flight analyses, and RNA sequencing. Additionally, disease severity and mortality were examined in patients with and without GI symptoms in 2 large, independent cohorts of hospitalized patients in the United States (N = 634) and Europe (N = 287) using multivariate logistic regressions. RESULTS: COVID-19 case patients and control individuals in the biopsy cohort were comparable for age, sex, rates of hospitalization, and relevant comorbid conditions. SARS-CoV-2 was detected in small intestinal epithelial cells by immunofluorescence staining or electron microscopy in 15 of 17 patients studied. High-dimensional analyses of GI tissues showed low levels of inflammation, including down-regulation of key inflammatory genes including IFNG, CXCL8, CXCL2, and IL1B and reduced frequencies of proinflammatory dendritic cells compared with control individuals. Consistent with these findings, we found a significant reduction in disease severity and mortality in patients presenting with GI symptoms that was independent of sex, age, and comorbid illnesses and despite similar nasopharyngeal SARS-CoV-2 viral loads. Furthermore, there was reduced levels of key inflammatory proteins in circulation in patients with GI symptoms. CONCLUSIONS: These data highlight the absence of a proinflammatory response in the GI tract despite detection of SARS-CoV-2. In parallel, reduced mortality in patients with COVID-19 presenting with GI symptoms was observed. A potential role of the GI tract in attenuating SARS-CoV-2-associated inflammation needs to be further examined.


Assuntos
COVID-19/virologia , Gastroenteropatias/virologia , Imunidade nas Mucosas , Mucosa Intestinal/virologia , SARS-CoV-2/patogenicidade , Idoso , Idoso de 80 Anos ou mais , COVID-19/diagnóstico , COVID-19/imunologia , COVID-19/mortalidade , Estudos de Casos e Controles , Células Cultivadas , Citocinas/sangue , Feminino , Gastroenteropatias/diagnóstico , Gastroenteropatias/imunologia , Gastroenteropatias/mortalidade , Interações Hospedeiro-Patógeno , Humanos , Mediadores da Inflamação/sangue , Mucosa Intestinal/imunologia , Itália , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque , Prognóstico , Medição de Risco , Fatores de Risco , SARS-CoV-2/imunologia , Carga Viral
7.
medRxiv ; 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-32909002

RESUMO

We sought to characterize the role of the gastrointestinal immune system in the pathogenesis of the inflammatory response associated with COVID-19. We measured cytokines, inflammatory markers, viral RNA, microbiome composition and antibody responses in stool from a cohort of 44 hospitalized COVID-19 patients. SARS-CoV-2 RNA was detected in stool of 41% of patients and more frequently in patients with diarrhea. Patients who survived had lower fecal viral RNA than those who died. Strains isolated from stool and nasopharynx of an individual were the same. Compared to uninfected controls, COVID-19 patients had higher fecal levels of IL-8 and lower levels of fecal IL-10. Stool IL-23 was higher in patients with more severe COVID-19 disease, and we found evidence of intestinal virus-specific IgA responses associated with more severe disease. We provide evidence for an ongoing humeral immune response to SARS-CoV-2 in the gastrointestinal tract, but little evidence of overt inflammation.

8.
medRxiv ; 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-32935117

RESUMO

Given that gastrointestinal (GI) symptoms are a prominent extrapulmonary manifestation of coronavirus disease 2019 (COVID-19), we investigated intestinal infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its effect on disease pathogenesis. SARS-CoV-2 was detected in small intestinal enterocytes by immunofluorescence staining or electron microscopy, in 13 of 15 patients studied. High dimensional analyses of GI tissues revealed low levels of inflammation in general, including active downregulation of key inflammatory genes such as IFNG, CXCL8, CXCL2 and IL1B and reduced frequencies of proinflammatory dendritic cell subsets. To evaluate the clinical significance of these findings, examination of two large, independent cohorts of hospitalized patients in the United States and Europe revealed a significant reduction in disease severity and mortality that was independent of gender, age, and examined co-morbid illnesses. The observed mortality reduction in COVID-19 patients with GI symptoms was associated with reduced levels of key inflammatory proteins including IL-6, CXCL8, IL-17A and CCL28 in circulation but was not associated with significant differences in nasopharyngeal viral loads. These data draw attention to organ-level heterogeneity in disease pathogenesis and highlight the role of the GI tract in attenuating SARS-CoV-2-associated inflammation with related mortality benefit. ONE SENTENCE SUMMARY: Intestinal infection with SARS-CoV-2 is associated with a mild inflammatory response and improved clinical outcomes.

9.
Proc Natl Acad Sci U S A ; 117(35): 21536-21545, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817490

RESUMO

The building evidence for the contribution of microbiota to human disease has spurred an effort to develop therapies that target the gut microbiota. This is particularly evident in inflammatory bowel diseases (IBDs), where clinical trials of fecal microbiota transplantation have shown some efficacy. To aid the development of novel microbiota-targeted therapies and to better understand the biology underpinning such treatments, we have used gnotobiotic mice to model microbiota manipulations in the context of microbiotas from humans with inflammatory bowel disease. Mice colonized with IBD donor-derived microbiotas exhibit a stereotypical set of phenotypes, characterized by abundant mucosal Th17 cells, a deficit in the tolerogenic RORγt+ regulatory T (Treg) cell subset, and susceptibility to disease in colitis models. Transplanting healthy donor-derived microbiotas into mice colonized with human IBD microbiotas led to induction of RORγt+ Treg cells, which was associated with an increase in the density of the microbiotas following transplant. Microbiota transplant reduced gut Th17 cells in mice colonized with a microbiota from a donor with Crohn's disease. By culturing strains from this microbiota and screening them in vivo, we identified a specific strain that potently induces Th17 cells. Microbiota transplants reduced the relative abundance of this strain in the gut microbiota, which was correlated with a reduction in Th17 cells and protection from colitis.


Assuntos
Transplante de Microbiota Fecal , Doenças Inflamatórias Intestinais/microbiologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Animais , Colite/prevenção & controle , Colo/microbiologia , Doença de Crohn/metabolismo , Doença de Crohn/microbiologia , Citocinas/imunologia , Modelos Animais de Doenças , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/imunologia , Humanos , Doenças Inflamatórias Intestinais/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/microbiologia , Células Th17/microbiologia
10.
Immunity ; 52(6): 910-941, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32505227

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide, igniting an unprecedented effort from the scientific community to understand the biological underpinning of COVID19 pathophysiology. In this Review, we summarize the current state of knowledge of innate and adaptive immune responses elicited by SARS-CoV-2 infection and the immunological pathways that likely contribute to disease severity and death. We also discuss the rationale and clinical outcome of current therapeutic strategies as well as prospective clinical trials to prevent or treat SARS-CoV-2 infection.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/imunologia , Pneumonia Viral/imunologia , Animais , COVID-19 , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/patologia , Infecções por Coronavirus/terapia , Suscetibilidade a Doenças , Humanos , Imunidade Inata , Memória Imunológica , Inflamação/imunologia , Inflamação/virologia , Linfócitos/imunologia , Células Mieloides/imunologia , Pandemias , Pneumonia Viral/diagnóstico , Pneumonia Viral/patologia , Pneumonia Viral/terapia , SARS-CoV-2
11.
Diabetes ; 69(8): 1692-1707, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32381645

RESUMO

A failure in self-tolerance leads to autoimmune destruction of pancreatic ß-cells and type 1 diabetes (T1D). Low-molecular-weight dextran sulfate (DS) is a sulfated semisynthetic polysaccharide with demonstrated cytoprotective and immunomodulatory properties in vitro. However, whether DS can protect pancreatic ß-cells, reduce autoimmunity, and ameliorate T1D is unknown. In this study, we report that DS, but not dextran, protects human ß-cells against cytokine-mediated cytotoxicity in vitro. DS also protects mitochondrial function and glucose-stimulated insulin secretion and reduces chemokine expression in human islets in a proinflammatory environment. Interestingly, daily treatment with DS significantly reduces diabetes incidence in prediabetic NOD mice and, most importantly, reverses diabetes in early-onset diabetic NOD mice. DS decreases ß-cell death, enhances islet heparan sulfate (HS)/HS proteoglycan expression, and preserves ß-cell mass and plasma insulin in these mice. DS administration also increases the expression of the inhibitory costimulatory molecule programmed death-1 (PD-1) in T cells, reduces interferon-γ+CD4+ and CD8+ T cells, and enhances the number of FoxP3+ cells. Collectively, these studies demonstrate that the action of one single molecule, DS, on ß-cell protection, extracellular matrix preservation, and immunomodulation can reverse diabetes in NOD mice, highlighting its therapeutic potential for the treatment of T1D.


Assuntos
Autoimunidade/efeitos dos fármacos , Sulfato de Dextrana/uso terapêutico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Animais , Western Blotting , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Quimiocinas/metabolismo , Citometria de Fluxo , Fatores de Transcrição Forkhead/metabolismo , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Humanos , Imuno-Histoquímica , Células Secretoras de Insulina/metabolismo , Camundongos , Óxidos de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Linfócitos T/metabolismo
12.
Diabetologia ; 60(11): 2252-2255, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28835984

RESUMO

AIMS/HYPOTHESIS: Type 1 diabetes is believed to be an autoimmune disease associated with irreversible loss of insulin secretory function that follows a chronic progressive course. However, it has been speculated that relapsing/remitting disease progression may occur in type 1 diabetes. METHODS: We report the case of an 18-year-old girl with Graves' disease, chronic inflammatory demyelinating polyneuropathy (CIDP) and multiple islet autoantibodies, presenting with relapsing/remitting hyperglycaemia. Peripheral blood mononuclear cells were analysed for islet autoimmunity. RESULTS: There were two instances of hyperglycaemia relapse during CIDP flare-ups that required insulin therapy and remitted after i.v. immunoglobulin (IVIG) therapy improving neurological symptoms. A diagnosis of type 1 diabetes was assigned on the basis of insulin need, HbA1c and islet autoantibodies. Insulin requirements disappeared following IVIG treatment and peaked during CIDP flare-ups. Pro- and anti-inflammatory cytokine responses were noted against islet autoantigens. CONCLUSIONS/INTERPRETATION: We provide clinical evidence of relapsing/remitting type 1 diabetes associated with IVIG treatment and the regulation of islet autoimmunity. Despite sufficient residual beta cell mass, individuals can experience episodes of impaired glycaemia control. This disconnect between beta cell mass and function highlighted by our case may have implications for the use of beta cell function as the primary endpoint for immune intervention trials aiming to protect beta cell mass rather than function. Immune modulation may restore beta cell function and glycaemic control.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Adolescente , Autoimunidade , Glicemia/metabolismo , Feminino , Humanos , Células Secretoras de Insulina/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/metabolismo , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/patologia
13.
Curr Diab Rep ; 16(7): 63, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27168063

RESUMO

Autoreactive T cells specific for islet autoantigens develop in type 1 diabetes (T1D) by escaping central as well as peripheral tolerance. The current paradigm for development of islet autoimmunity is just beginning to include the contribution of posttranslationally modified (PTM) islet autoantigens, for which the immune system may be ignorant rather than tolerant. As a result, PTM is the latest promising lead in the quest to understand how the break in peripheral tolerance occurs in T1D. However, it is not completely clear how, where, or when these modifications take place. Currently, only a few PTM antigens have been well-thought-out or identified in T1D, and methods for identifying and characterizing new PTM antigens are rapidly improving. This review will address both reported and potential new sources of modified islet autoantigens and discuss how islet neo-autoantigen generation may contribute to the development and progression of T1D.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Autoimunidade , Diabetes Mellitus Tipo 1/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/metabolismo , Fatores de Risco
14.
Immun Inflamm Dis ; 4(1): 91-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27042306

RESUMO

Normal glucose metabolism is critical to immune function but the effects of short-term hyperglycemia on immunity are not well described. To study this phenomenon, we induced hyperglycemia in healthy subjects for 2 h with intravenous dextrose and octreotide. An RNA-seq analysis of whole blood RNA demonstrated alterations in multiple immune pathways and transcripts during acute hyperglycemia including decreased transcription of IL-6, an important component of both innate and adaptive immune responses. Additional in vitro studies of human peripheral blood mononuclear cells (PBMCs) exposed to high glucose confirmed decreased IL-6 expression, most prominently in CD14(+)CD16(+) intermediate monocytes. Hyperglycemia also reduced IL-17A expression suggesting further impairment of immune responses during acute hyperglycemia. These findings demonstrate multiple defective immune responses in acute hyperglycemia and suggest a novel role for intermediate monocytes as metabolically sensitive innate immune cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...