Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37645845

RESUMO

The C. difficile binary toxin (CDT) enters host cells via endosomal delivery like many other 'AB'-type binary toxins. In this study, the cell-binding component of CDT, termed CDTb, was found to bind and form pores in lipid bilayers upon depleting free Ca 2+ ion concentrations, and not by lowering pH, as found for other binary toxins (i.e., anthrax). Cryoelectron microscopy, nuclear magnetic resonance spectroscopy, surface plasmon resonance, electrochemical impedance spectroscopy, CDT toxicity studies, and site directed mutagenesis show that dissociation of Ca 2+ from a single site in receptor binding domain 1 (RBD1) of CDTb is consistent with a molecular mechanism in which Ca 2+ dissociation from RBD1 induces a "trigger" via conformational exchange that enables CDTb to bind and form pores in endosomal membrane bilayers as free Ca 2+ concentrations decrease during CDT endosomal delivery.

2.
Nat Commun ; 14(1): 1955, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029118

RESUMO

The extreme 5'-end of the enterovirus RNA genome contains a conserved cloverleaf-like domain that recruits 3CD and PCBP proteins required for initiating genome replication. Here, we report the crystal structure at 1.9 Å resolution of this domain from the CVB3 genome in complex with an antibody chaperone. The RNA folds into an antiparallel H-type four-way junction comprising four subdomains with co-axially stacked sA-sD and sB-sC helices. Long-range interactions between a conserved A40 in the sC-loop and Py-Py helix within the sD subdomain organize near-parallel orientations of the sA-sB and sC-sD helices. Our NMR studies confirm that these long-range interactions occur in solution and without the chaperone. The phylogenetic analyses indicate that our crystal structure represents a conserved architecture of enteroviral cloverleaf-like domains, including the A40 and Py-Py interactions. The protein binding studies further suggest that the H-shape architecture provides a ready-made platform to recruit 3CD and PCBP2 for viral replication.


Assuntos
Poliovirus , Poliovirus/genética , Replicação do RNA , Filogenia , Ligação Proteica , Replicação Viral , RNA/metabolismo , RNA Viral/metabolismo , Conformação de Ácido Nucleico
3.
PLoS One ; 18(1): e0280526, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36652434

RESUMO

AP endonuclease 1 (APE1) processes DNA lesions including apurinic/apyrimidinic sites and 3´-blocking groups, mediating base excision repair and single strand break repair. Much effort has focused on developing specific inhibitors of APE1, which could have important applications in basic research and potentially lead to clinical anticancer agents. We used structural, biophysical, and biochemical methods to characterize several reported inhibitors, including 7-nitroindole-2-carboxylic acid (CRT0044876), given its small size, reported potency, and widespread use for studying APE1. Intriguingly, NMR chemical shift perturbation (CSP) experiments show that CRT0044876 and three similar indole-2-carboxylic acids bind a pocket distal from the APE1 active site. A crystal structure confirms these findings and defines the pose for 5-nitroindole-2-carboxylic acid. However, dynamic light scattering experiments show the indole compounds form colloidal aggregates that could bind (sequester) APE1, causing nonspecific inhibition. Endonuclease assays show the compounds lack significant APE1 inhibition under conditions (detergent) that disrupt aggregation. Thus, binding of the indole-2-carboxylic acids at the remote pocket does not inhibit APE1 repair activity. Myricetin also forms aggregates and lacks APE1 inhibition under aggregate-disrupting conditions. Two other reported compounds (MLS000552981, MLS000419194) inhibit APE1 in vitro with low micromolar IC50 and do not appear to aggregate in this concentration range. However, NMR CSP experiments indicate the compounds do not bind specifically to apo- or Mg2+-bound APE1, pointing to a non-specific mode of inhibition, possibly DNA binding. Our results highlight methods for rigorous interrogation of putative APE1 inhibitors and should facilitate future efforts to discover compounds that specifically inhibit this important repair enzyme.


Assuntos
Antineoplásicos , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Humanos , Antineoplásicos/farmacologia , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Indóis/farmacologia
4.
J Mol Biol ; 434(23): 167872, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36354074

RESUMO

EF-hand Ca2+-binding proteins (CBPs), such as S100 proteins (S100s) and calmodulin (CaM), are signaling proteins that undergo conformational changes upon increasing intracellular Ca2+. Upon binding Ca2+, S100 proteins and CaM interact with protein targets and induce important biological responses. The Ca2+-binding affinity of CaM and most S100s in the absence of target is weak (CaKD > 1 µM). However, upon effector protein binding, the Ca2+ affinity of these proteins increases via heterotropic allostery (CaKD < 1 µM). Because of the high number and micromolar concentrations of EF-hand CBPs in a cell, at any given time, allostery is required physiologically, allowing for (i) proper Ca2+ homeostasis and (ii) strict maintenance of Ca2+-signaling within a narrow dynamic range of free Ca2+ ion concentrations, [Ca2+]free. In this review, mechanisms of allostery are coalesced into an empirical "binding and functional folding (BFF)" physiological framework. At the molecular level, folding (F), binding and folding (BF), and BFF events include all atoms in the biomolecular complex under study. The BFF framework is introduced with two straightforward BFF types for proteins (type 1, concerted; type 2, stepwise) and considers how homologous and nonhomologous amino acid residues of CBPs and their effector protein(s) evolved to provide allosteric tightening of Ca2+ and simultaneously determine how specific and relatively promiscuous CBP-target complexes form as both are needed for proper cellular function.


Assuntos
Calmodulina , Motivos EF Hand , Proteínas S100 , Humanos , Calmodulina/química , Proteínas S100/química , Ligação Proteica , Dobramento de Proteína , Regulação Alostérica , Conformação Proteica
5.
J Phycol ; 58(1): 146-160, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34773248

RESUMO

The pelagophyte Aureococcus anophagefferens causes harmful brown tide blooms in marine embayments on three continents. Aureococcus anophagefferens was the first harmful algal bloom species to have its genome sequenced, an advance that evidenced genes important for adaptation to environmental conditions that prevail during brown tides. To expand the genomic tools available for this species, genomes for four strains were assembled, including three newly sequenced strains and one assembled from publicly available data. These genomes ranged from 57.11 to 73.62 Mb, encoding 13,191-17,404 potential proteins. All strains shared ~90% of their encoded proteins as determined by homology searches and shared most functional orthologs as determined by KEGG, although each strain also possessed coding sequences with unique functions. Like the original reference genome, the genomes assembled in this study possessed genes hypothesized to be important in bloom proliferation, including genes involved in organic compound metabolism and growth at low light. Cross-strain informatics and culture experiments suggest that the utilization of purines is a potentially important source of organic nitrogen for brown tides. Analyses of metatranscriptomes from a brown tide event demonstrated that use of a single genome yielded a lower read mapping percentage (~30% of library reads) as compared to a database generated from all available genomes (~43%), suggesting novel information about bloom ecology can be gained from expanding genomic space. This work demonstrates the continued need to sequence ecologically relevant algae to understand the genomic potential and their ecology in the environment.


Assuntos
Estramenópilas , Proliferação Nociva de Algas , Nitrogênio/metabolismo , Nutrientes , Estramenópilas/genética , Estramenópilas/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34548403

RESUMO

Many biological functions are leaky, and organisms that perform them contribute some of their products to a community "marketplace" in which nonperforming individuals may compete for them. Leaky functions are partitioned unequally in microbial communities, and the evolutionary forces determining which species perform them and which become beneficiaries are poorly understood. Here, we demonstrate that the market principle of comparative advantage determines the distribution of a leaky antibiotic resistance gene in an environment occupied by two "species"-strains of Escherichia coli growing on mutually exclusive resources and thus occupying separate niches. Communities comprised of antibiotic-resistant cells were rapidly invaded by sensitive cells of both types. While the two phenotypes coexisted stably for 500 generations, in 15/18 replicates, antibiotic sensitivity became fixed in one species. Fixation always occurred in the same species despite both species being genetically identical except for their niche-defining mutation. In the absence of antibiotic, the fitness cost of resistance was identical in both species. However, the intrinsic resistance of the species that ultimately became the sole helper was significantly lower, and thus its reward for expressing the resistance gene was higher. Opportunity cost of resistance, not absolute cost or efficiency of antibiotic removal, determined which species became the helper, consistent with the economic theory of comparative advantage. We present a model that suggests that this market-like dynamic is a general property of Black Queen systems and, in communities dependent on multiple leaky functions, could lead to the spontaneous development of an equitable and efficient division of labor.


Assuntos
Antibacterianos/farmacologia , Evolução Biológica , Resistência Microbiana a Medicamentos , Escherichia coli/fisiologia , Microbiota , Escherichia coli/efeitos dos fármacos , Modelos Teóricos
7.
Biochemistry ; 60(37): 2781-2794, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34472844

RESUMO

RNA is highly negatively charged and often acquires complex structures that require the presence of divalent cations. Subtle changes in conformation resulting from changes in sequence can affect the way ions associate with RNA. Riboswitches are RNA molecules that are involved in the control of gene expression in bacteria and are excellent systems for testing the effects of sequence variations on the conformation of RNA because they contain a highly conserved binding pocket but present sequence variability among different organisms. In this work, we have compared the aptamer domain of a proposed M-box riboswitch from Mycobacterium tuberculosis with the aptamer domain of a validated M-box riboswitch from Bacillus subtilis. We have in vitro transcribed and purified wild-type (WT) M-box riboswitches from M. tuberculosis and B. subtilis as well as a variety of mutated aptamers in which regions from one riboswitch have been replaced with regions from the other riboswitch. We have used ultraviolet unfolding experiments and circular dichroism to characterize the interactions of WT and related M-box riboswitches with divalent cations. Our results show that M-box from M. tuberculosis associates with Mg2+ and Sr2+ in a similar fashion while M-box from B. subtilis discriminates between these two ions and appears to associate better with Mg2+. Our overall results show that M-box from M. tuberculosis interacts differently with cations than M-box from B. subtilis and suggest conformational differences between these two riboswitches.


Assuntos
Cátions Bivalentes/metabolismo , Conformação de Ácido Nucleico/efeitos dos fármacos , Riboswitch/genética , Aptâmeros de Nucleotídeos/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Sítios de Ligação/genética , Cátions Bivalentes/química , Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/genética , Ligantes , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , RNA Bacteriano/química , Riboswitch/fisiologia , Transcrição Gênica/genética
8.
mBio ; 12(3): e0087321, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34060332

RESUMO

The mechanisms driving cyanobacterial harmful algal blooms (HABs) like those caused by Microcystis aeruginosa remain elusive, but improved defense against viral predation has been implicated for success in eutrophic environments. Our genus-level analyses of 139,023 genomes revealed that HAB-forming cyanobacteria carry vastly more restriction modification systems per genome (RMPG) than nearly all other prokaryotic genera, suggesting that viral defense is a cornerstone of their ecological success. In contrast, picocyanobacteria that numerically dominate nutrient-poor systems have the fewest RMPG within the phylum Cyanobacteria. We used classic resource competition models to explore the hypothesis that nutrient enrichments drive ecological selection for high RMPG due to increased host-phage contact rate. These classic models, agnostic to the mechanism of defense, explain how nutrient loading can select for increased RMPG but, importantly, fail to explain the extreme accumulation of these defense systems. However, extreme accumulation of RMPG can be achieved in a novel "memory" model that accounts for a unique activity of restriction modification systems: the accidental methylation of viral DNA by the methyltransferase. The methylated virus "remembers" the RM defenses of its former host and can evade these defenses if they are present in the next host. This viral memory leads to continual RM system devaluation; RMs accumulate extensively because the benefit of each addition is diminished. Our modeling leads to the hypothesis that nutrient loading and virion methylation drive the extreme accumulation of RMPG in HAB-forming cyanobacteria. Finally, our models suggest that hosts with different RMPG values can coexist when hosts have unique sets of RM systems. IMPORTANCE Harmful algal blooms (HABs), caused by cyanobacteria like Microcystis aeruginosa, are a global threat to water quality and use across the planet. Researchers have agreed that nutrient loading is a major contributor to HAB persistence. While we may understand the environmental conditions that cause HABs, we still struggle in identifying the mechanisms that explain why these organisms have a competitive edge against other, less ecologically hazardous organisms. Our interdisciplinary approach in microbiology, mathematical population modeling, and genomics allows us to use nearly 70 years of research in restriction modification systems to show that HAB-forming cyanobacteria are exceptional in their ability to defend against viruses, and this capacity is intimately tied to nutrient loading. Our hypothesis suggests that defense against viral predation is a fundamental pillar of cyanobacterial ecological strategy and an important contributor to HAB dynamics.


Assuntos
Bacteriófagos/metabolismo , Cianobactérias/genética , Cianobactérias/virologia , Enzimas de Restrição-Modificação do DNA/genética , Genoma Bacteriano , Proliferação Nociva de Algas , Nutrientes , Qualidade da Água
9.
PeerJ ; 8: e10646, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362982

RESUMO

Wolbachiae are obligate intracellular bacteria that infect arthropods and certain nematodes. Usually maternally inherited, they may provision nutrients to (mutualism) or alter sexual biology of (reproductive parasitism) their invertebrate hosts. We report the assembly of closed genomes for two novel wolbachiae, wCfeT and wCfeJ, found co-infecting cat fleas (Ctenocephalides felis) of the Elward Laboratory colony (Soquel, CA, USA). wCfeT is basal to nearly all described Wolbachia supergroups, while wCfeJ is related to supergroups C, D and F. Both genomes contain laterally transferred genes that inform on the evolution of Wolbachia host associations. wCfeT carries the Biotin synthesis Operon of Obligate intracellular Microbes (BOOM); our analyses reveal five independent acquisitions of BOOM across the Wolbachia tree, indicating parallel evolution towards mutualism. Alternately, wCfeJ harbors a toxin-antidote operon analogous to the wPip cinAB operon recently characterized as an inducer of cytoplasmic incompatibility (CI) in flies. wCfeJ cinB and three adjacent genes are collectively similar to large modular toxins encoded in CI-like operons of certain Wolbachia strains and Rickettsia species, signifying that CI toxins streamline by fission of large modular toxins. Remarkably, the C. felis genome itself contains two CI-like antidote genes, divergent from wCfeJ cinA, revealing episodic reproductive parasitism in cat fleas and evidencing mobility of CI loci independent of WO-phage. Additional screening revealed predominant co-infection (wCfeT/wCfeJ) amongst C. felis colonies, though fleas in wild populations mostly harbor wCfeT alone. Collectively, genomes of wCfeT, wCfeJ, and their cat flea host supply instances of lateral gene transfers that could drive transitions between parasitism and mutualism.

10.
Front Microbiol ; 11: 887, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508769

RESUMO

Chloroviruses (family Phycodnaviridae) infect eukaryotic, freshwater, unicellular green algae. A unique feature of these viruses is an abundance of DNA methyltransferases, with isolates dedicating up to 4.5% of their protein coding potential to these genes. This diversity highlights just one of the long-standing values of the chlorovirus model system; where group-wide epigenomic characterization might begin to elucidate the function(s) of DNA methylation in large dsDNA viruses. We characterized DNA modifications in the prototype chlorovirus, PBCV-1, using single-molecule real time (SMRT) sequencing (aka PacBio). Results were compared to total available sites predicted in silico based on DNA sequence alone. SMRT-software detected N6-methyl-adenine (m6A) at GATC and CATG recognition sites, motifs previously shown to be targeted by PBCV-1 DNA methyltransferases M.CviAI and M. CviAII, respectively. At the same time, PacBio analyses indicated that 10.9% of the PBCV-1 genome had large interpulse duration ratio (ipdRatio) values, the primary metric for DNA modification identification. These events represent 20.6x more sites than can be accounted for by all available adenines in GATC and CATG motifs, suggesting base or backbone modifications other than methylation might be present. To define methylation stability, we cross-compared methylation status of each GATC and CATG sequence in three biological replicates and found ∼81% of sites were stably methylated, while ∼2% consistently lack methylation. The remaining 17% of sites were stochastically methylated. When methylation status was analyzed for both strands of each target, we show that palindromes existed in completely non-methylated states, fully-methylated states, or hemi-methylated states, though GATC sites more often lack methylation than CATG sequences. Given that both sequences are targeted by not just methyltransferases, but by restriction endonucleases that are together encoded by PBCV-1 as virus-originating restriction modification (RM) systems, there is strong selective pressure to modify all target sites. The finding that most instances of non-methylation are associated with hemi-methylation is congruent with observations that hemi-methylated palindromes are resistant to cleavage by restriction endonucleases. However, sites where hemi-methylation is conserved might represent a unique regulatory function for PBCV-1. This study serves as a baseline for future investigation into the epigenomics of chloroviruses and their giant virus relatives.

11.
J Med Life ; 11(2): 168-174, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30140324

RESUMO

The competitive environment forces health care organizations to measure the quality and satisfaction as perceived by their health care consumers in order to determine both their financial and non-financial performance. The aim of this study was to examine the role of the consumers' emotional satisfaction in health care services. More exactly, the study investigated the role of emotional satisfaction in two directions: as a consequence of perceived functional quality and as a precursor of the consumers' behavioral intentions, such as loyalty and WOM, integrated into a conceptual model. The sample size was of 100 respondents, health care consumers of a private medical organization. The sampling method consisted of quota sampling, suggesting that each fifth individual received a questionnaire. The demographic profile of the health care consumers was determined in SPSS version 21 and the model was validated in SmartPls version 3, using the Structural Equation Modeling. Most of the respondents (51%) were male, from urban residential area (56%) and were aged between 28 and 37 years (40%). In terms of education, the vast majority had university degrees (47%), with their revenue between 2600-3000 RON (27%), married (51%) and who visited the doctor because of routine check-ups (47%). Moreover, the empirical model revealed that there are positive relationships between relationship quality and perceived quality, relationship quality and emotional satisfaction, perceived quality and loyalty, emotional satisfaction and loyalty as well as emotional quality and WOM.


Assuntos
Emoções , Serviços de Saúde , Satisfação do Paciente , Satisfação Pessoal , Adolescente , Adulto , Demografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Percepção , Reprodutibilidade dos Testes , Inquéritos e Questionários , Adulto Jovem
12.
Proc Biol Sci ; 282(1821): 20152292, 2015 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-26674951

RESUMO

Many populations live in environments subject to frequent biotic and abiotic changes. Nonetheless, it is interesting to ask whether an evolving population's mean fitness can increase indefinitely, and potentially without any limit, even in a constant environment. A recent study showed that fitness trajectories of Escherichia coli populations over 50 000 generations were better described by a power-law model than by a hyperbolic model. According to the power-law model, the rate of fitness gain declines over time but fitness has no upper limit, whereas the hyperbolic model implies a hard limit. Here, we examine whether the previously estimated power-law model predicts the fitness trajectory for an additional 10 000 generations. To that end, we conducted more than 1100 new competitive fitness assays. Consistent with the previous study, the power-law model fits the new data better than the hyperbolic model. We also analysed the variability in fitness among populations, finding subtle, but significant, heterogeneity in mean fitness. Some, but not all, of this variation reflects differences in mutation rate that evolved over time. Taken together, our results imply that both adaptation and divergence can continue indefinitely--or at least for a long time--even in a constant environment.


Assuntos
Escherichia coli/genética , Aptidão Genética , Adaptação Fisiológica/genética , Evolução Biológica , Meio Ambiente , Genética Populacional , Modelos Genéticos , Taxa de Mutação
13.
Evolution ; 68(10): 2960-71, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24989794

RESUMO

The Black Queen Hypothesis (BQH) was originally proposed to explain the dependence of some marine bacteria on helper organisms for protection from hydrogen peroxide (HOOH). The BQH predicts that selection for the evolutionary loss of leaky functions from individuals can produce commensal or mutualistic interactions. We demonstrated the leakiness of HOOH detoxification by complementing a HOOH-sensitive Escherichia coli mutant with a plasmid-encoded HOOH-detoxifying enzyme, KatG, and then evolving populations founded by this strain in two environments. When HOOH was absent, plasmid-carrying cells were outcompeted by plasmid-free segregants, reflecting the high cost of KatG expression. However, plasmid-carrying and plasmid-free cells coexisted for at least 1200 generations in three replicate populations evolved in the presence of HOOH, although their relative proportions fluctuated as beneficial mutations arose in one type or the other. Evolved plasmid-bearing cells reduced the cost of plasmid carriage even as they increased the rate of HOOH removal relative to the ancestor. Meanwhile, plasmid-free cells remained dependent on HOOH detoxification by the plasmid-bearing cells. These results demonstrate that partitioning of a Black Queen function can enable the stable coexistence of very similar organisms, even in this most restrictive case where the two types are competing for a single resource.


Assuntos
Evolução Biológica , Escherichia coli/genética , Aptidão Genética , Modelos Genéticos , Catalase/genética , Escherichia coli/classificação , Proteínas de Escherichia coli/genética , Genética Populacional , Peróxido de Hidrogênio/toxicidade , Plasmídeos/genética
14.
Mini Rev Med Chem ; 7(10): 1019-26, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17979804

RESUMO

Cell-based biosensors represent the next revolution in medical diagnostics, offering a number of significant advantages, such as high speed, portability and low cost. The present review focuses on the most successful technologies used for the detection of ultra-low concentrations of bioactive analytes (such as metabolic markers and pathogens) in clinical samples.


Assuntos
Técnicas Biossensoriais/instrumentação , Química Clínica , Animais , Células Cultivadas , Química Clínica/instrumentação , Química Clínica/métodos , Humanos
15.
Plant Cell Rep ; 26(12): 2063-9, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17687558

RESUMO

We investigated a possible relationship between the levels of reactive oxygen species (ROS) and the stimulation of frond division of the aquatic plant Spirodela polyrrhiza (duckweed) during a 7-day experimental culture period. In particular, we monitored superoxide concentration using a state-of-the-art cell biosensor. A considerable reduction in ROS and superoxide concentration was observed during the first 2 days of culture, whereas duckweed cultures achieved near exponential growth rates after the second day. In addition, apoptotic markers such as the cytoplasmic concentration of cytochrome c, mitochondrial membrane depolarization and the activity of caspase-3 declined during the culture period and at least before daughter frond maturation. We suggest that S. polyrrhiza frond division may have been stimulated by the observed reduction of free radicals and the associated avoidance of cell apoptotic pathways in cultured plants.


Assuntos
Araceae/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Araceae/citologia , Técnicas Biossensoriais/métodos , Caspases/metabolismo , Divisão Celular , Citocromos c/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Espectrometria de Fluorescência , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...