Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Acta Naturae ; 15(3): 37-49, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908768

RESUMO

Autophagy is the process of lysosomal elimination of the cell organelles, cytoplasmic sites, and pathogenic microorganisms that enter the cell. This process is associated with both cell death regulation and an increase in cell survival chances. Autophagy is involved in the development of various diseases (Crohn disease, cancer, atherosclerosis, etc.). For these reasons, it is of significant interest to establish the molecular targets involved in autophagy regulation and the factors that mediate its participation in pathogenesis. The review describes the potential molecular mechanisms involved in the regulation of autophagy, its contribution to the vital cell activity in a healthy organism, and pathologies.

2.
Mol Biol ; 55(6): 773-785, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955555

RESUMO

The mechanisms involved in the origin and development of malignant and neurodegenerative diseases are an important area of modern biomedicine. A crucial task is to identify new molecular markers that are associated with rearrangements of intracellular signaling and can be used for prognosis and the development of effective treatment approaches. The proteolipid plasmolipin (PLLP) is a possible marker. PLLP is a main component of the myelin sheath and plays an important role in the development and normal function of the nervous system. PLLP is involved in intracellular transport, lipid raft formation, and Notch signaling. PLLP is presumably involved in various disorders, such as cancer, schizophrenia, Alzheimer's disease, and type 2 diabetes mellitus. PLLP and its homologs were identified as possible virus entry receptors. The review summarizes the data on the PLLP structure, normal functions, and role in diseases.

3.
Mol Biol (Mosk) ; 55(6): 883-896, 2021.
Artigo em Russo | MEDLINE | ID: mdl-34837695

RESUMO

The mechanisms involved in the origin and development of malignant and neurodegenerative diseases are an important area of modern biomedicine. A crucial task is to identify new molecular markers that are associated with rearrangements of intracellular signaling and can be used for prognosis and the development of effective treatment approaches. The proteolipid plasmolipin (PLLP) is a possible marker. PLLP is a main component of the myelin sheath and plays an important role in the development and normal function of the nervous system. PLLP is involved in intracellular transport, lipid raft formation, and Notch signaling. PLLP is presumably involved in various disorders, such as cancer, schizophrenia, Alzheimer's disease, and type 2 diabetes mellitus. PLLP and its homologs were identified as possible virus entry receptors. The review summarizes the data on the PLLP structure, normal functions, and role in diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Proteínas do Tecido Nervoso , Humanos , Bainha de Mielina , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina , Proteolipídeos
4.
Acta Naturae ; 13(2): 98-105, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34377560

RESUMO

The mutations associated with malignant cell transformation are believed to disrupt the expression of a significant number of normal, non-mutant genes. The proteins encoded by these genes are involved in the regulation of many signaling pathways that are responsible for differentiation and proliferation, as well as sensitivity to apoptotic signals, growth factors, and cytokines. Abnormalities in the balance of signaling pathways can lead to the transformation of a normal cell, which results in tumor formation. Detection of the target genes and the proteins they encode and that are involved in the malignant transformation is one of the major evolutions in anti-cancer biomedicine. Currently, there is an accumulation of data that shed light on the role of the MCTS1 and DENR proteins in oncogenesis.

5.
Mol Biol (Mosk) ; 54(3): 522-528, 2020.
Artigo em Russo | MEDLINE | ID: mdl-32492016

RESUMO

Acute myeloid leukemia (AML) is a genetically heterogeneous group of oncological diseases of the hematopoietic system, which are extremely difficult to treat. The development of new targeted drugs (Hylteritinib, Venetoclax) significantly improved the survival of patients, but resistance, as well as cytotoxic anti-leukemia drugs, often occurs. The search for new molecular targets for the development of effective approaches for the treatment of AML is very urgent. In blast cells of patients with AML, mutations, chromosomal rearrangements, and increased expression of a number of non-mutant genes, including transcription factor genes, are detected. The transcription factor Sp 1 binds to GC-rich regions of regulatory regions of various genes and thus controls their expression. Sp1 targets include genes responsible for proliferation, cell cycle regulation, and differentiation. In many malignant diseases, a high level of Sp1 gene expression is associated with an unfavorable prognosis, therefore, Sp1 is considered as a promising therapeutic target for cancer. In this paper, we estimated the expression levels of Sp1 in various malignant tissues. Increased Sp1 expression was detected in samples obtained from patients with AML, acute lymphoblastic leukemia, Ewing sarcoma, ovarian and kidney cancer. It is also shown that Sp1 expression correlates with the expression of genes encoding cytokine receptors and growth factors (CSF1R and IL6R), intracellular kinases (CSK, SYK, PAK1, ILK, JAK2), and transcription factor LMO2. The correlation between expression levels of Sp1 and CSF1R, SYK, Jak2 and LMO2 is also characteristic of transplanted human leukemia cells. We measured expression levels of Sp1, CSF1R, ILK, PAK1 in the cells of three transplantable lines of human leukemia and found increased levels of expression of these genes in Kasumi-1 cells. In addition, we showed that Kasumi-1 cells are most sensitive to Mitramycin, a drug that displaces Sp1 from its targets with DNA. Our data indicate the need to identify AML cells that are most sensitive to inhibition of Sp1 activity in order to assess the possibility of suppressing its activity in vivo.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Plicamicina/farmacologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Fator de Transcrição Sp1/metabolismo , Quinases Ativadas por p21/metabolismo , Antibacterianos , Diferenciação Celular , Linhagem Celular Tumoral , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Sensibilidade e Especificidade
6.
Acta Naturae ; 12(1): 51-55, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477598

RESUMO

The mechanism of resistance of leukemia cells to chemotherapeutic drugs remains poorly understood. New model systems for studying the processes of malignant transformation of hematopoietic cells are needed. Based on cytokine-dependent murine acute myeloid leukemia (AML) FDC-P1 cells, we generated a new cell line with ectopic expression of the KIT gene encoding mutant human receptor tyrosine kinase (N822K). We investigated the role played by overexpression of the mutant KIT in the survival of leukemia cells and their sensitivity to therapeutic drugs. We also generated a co-culture system consisting of FDC-P1 murine leukemia cells and a HS-5 human stromal cell line. Our data can be used for a further comprehensive analysis of the role of KIT N822K mutation in the cellular response to anti-leukemic drugs, growth factors, and cytokines. These data are of interest in the development of new effective therapeutic approaches to the treatment of acute leukemia.

7.
Mol Biol (Mosk) ; 54(2): 293-299, 2020.
Artigo em Russo | MEDLINE | ID: mdl-32392199

RESUMO

Novel treatments for various types of malignant diseases are warranted. In this study, we evaluated JAK2 inhibitors (Janus kinase 2) for suppressing the growth of malignant neuroblastoma and glioblastoma cells as well as breast and non-small cell lung cancers. Neuroblastoma and glioblastoma cells are the most sensitive to the JAK2 inhibitor AG490. A study of the relative expression of receptors that can activate JAK2 suggests that cell line sensitivity to AG490 may be mediated by IL6-R, IL11-R and/or CSF1-R. AG490 enhances the effect of doxorubicin on neuroblastoma cells. Our findings suggest the possible relevance of JAK2 inhibitors for neuroblastoma therapy, especially in combination with doxorubicin.


Assuntos
Doxorrubicina/farmacologia , Janus Quinase 2/antagonistas & inibidores , Neuroblastoma/patologia , Ciclo Celular , Linhagem Celular Tumoral , Humanos , Janus Quinase 2/metabolismo , Fosforilação , Transdução de Sinais , Tirfostinas/farmacologia
8.
Acta Naturae ; 10(1): 15-23, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29713515

RESUMO

TAL1 (SCL/TAL1, T-cell acute leukemia protein 1) is a transcription factor that is involved in the process of hematopoiesis and leukemogenesis. It participates in blood cell formation, forms mesoderm in early embryogenesis, and regulates hematopoiesis in adult organisms. TAL1 is essential in maintaining the multipotency of hematopoietic stem cells (HSC) and keeping them in quiescence (stage G0). TAL1 forms complexes with various transcription factors, regulating hematopoiesis (E2A/HEB, GATA1-3, LMO1-2, Ldb1, ETO2, RUNX1, ERG, FLI1). In these complexes, TAL1 regulates normal myeloid differentiation, controls the proliferation of erythroid progenitors, and determines the choice of the direction of HSC differentiation. The transcription factors TAL1, E2A, GATA1 (or GATA2), LMO2, and Ldb1 are the major components of the SCL complex. In addition to normal hematopoiesis, this complex may also be involved in the process of blood cell malignant transformation. Upregulation of C-KIT expression is one of the main roles played by the SCL complex. Today, TAL1 and its partners are considered promising therapeutic targets in the treatment of T-cell acute lymphoblastic leukemia.

9.
Biochimie ; 142: 226-233, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28912093

RESUMO

Gene therapy is a promising method for treating malignant diseases. One of the main problems is target delivery of therapeutic genes. Here we show that lentiviral vector particles pseudotyped with Mus caroli endogenous retrovirus (McERV) envelope protein can be used for selective transduction of PLLP-expressing cells. As a therapeutic gene in McERV-pseudotyped vector particles we used miniSOG encoding the cytotoxic FMN-binding protein, which can generate reactive oxygen species under illumination. Significant cytotoxic effect (up to 80% of dead cells in population) was observed in PLLP-expressing cells transduced with McERV-pseudotyped vector particles and subjected to illumination. We demonstrated that the McERV-pseudotyped HIV-1 based lentiviral vector particles are an effective tool for selective photoinduced destruction of PLLP-expressing cells.


Assuntos
Retrovirus Endógenos , Técnicas de Transferência de Genes , Lentivirus/genética , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/genética , Proteínas Virais/metabolismo , Animais , Expressão Gênica , Células HEK293 , Humanos , Camundongos , Transdução Genética
10.
Mol Biol (Mosk) ; 50(3): 395-405, 2016.
Artigo em Russo | MEDLINE | ID: mdl-27414778

RESUMO

Cancer, along with cardiovascular disorders, is one of the most important problems of healthcare. Pathologies of the hematopoietic system are the most prevalent in patients under 30 years of age, including acute myeloid leukemia (AML), which is widespread and difficult to treat. The review considers the mechanisms that play a significant role in AML cell malignant transformation and shows the contributions of certain genes to both remission and resistance of AML cells to various treatments.


Assuntos
Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Leucemia Mieloide Aguda/genética , Proteínas de Neoplasias/genética , Transdução de Sinais/genética , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Caspases/genética , Caspases/metabolismo , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Granulócitos/efeitos dos fármacos , Granulócitos/metabolismo , Granulócitos/patologia , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Indução de Remissão , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
11.
Mol Biol (Mosk) ; 50(2): 255-65, 2016.
Artigo em Russo | MEDLINE | ID: mdl-27239845

RESUMO

Retinoids are signaling molecules that control a wide variety of cellular processes and possess antitumor activity. This work presents a comprehensive description of changes in the expression of 23 genes that regulate retinoid metabolism and signaling in non-small-cell lung cancer tumors compared to adjacent normal tissues obtained using RT-PCR. Even at early stages of malignant transformation, a significant decrease in ADH1B, ADH3, RDHL, and RALDH1 mRNA levels was observed in 82, 79, 73, and 64% of tumor specimens, respectively, and a considerable increase in AKR1B10 mRNA content was observed in 80% of tumors. Dramatic changes in the levels of these mRNAs can impair the synthesis of all-trans retinoic acid, a key natural regulatory retinoid. Apart from that, it was found that mRNA levels of nuclear retinoid receptor genes RXRγ, RARα, RXRα, and gene RDH11 were significantly decreased in 80, 67, 57, and 66% of tumor specimens, respectively. Thus, neoplastic transformation of lung tissue cells is accompanied with deregulated expression of key genes of retinoid metabolism and function.


Assuntos
3-Hidroxiesteroide Desidrogenases/biossíntese , Álcool Desidrogenase/biossíntese , Aldeído Desidrogenase/biossíntese , Aldeído Redutase/biossíntese , Carcinoma Pulmonar de Células não Pequenas/genética , 3-Hidroxiesteroide Desidrogenases/genética , Álcool Desidrogenase/genética , Aldeído Desidrogenase/genética , Família Aldeído Desidrogenase 1 , Aldeído Redutase/genética , Aldo-Ceto Redutases , Carcinoma Pulmonar de Células não Pequenas/patologia , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Humanos , RNA Mensageiro/biossíntese , Receptores do Ácido Retinoico/biossíntese , Receptores do Ácido Retinoico/genética , Retinal Desidrogenase , Receptor alfa de Ácido Retinoico , Retinoides/genética , Retinoides/metabolismo , Transdução de Sinais/genética , Tretinoína/metabolismo
12.
Mol Biol (Mosk) ; 50(2): 347-52, 2016.
Artigo em Russo | MEDLINE | ID: mdl-27239856

RESUMO

Bacterial ribonuclease binase is a potential anticancer agent. In the present study, we have determined the toxic effect of binase towards cell lines of T-cell acute lymphoblastic leukemia Jurkat and CEMss. We have shown that binase induces apoptosis in these cells. At the same time, binase does not cause toxic effects in leukocytes of healthy donors, which suggests that binase activity towards leukemic cells is selective. We have found that the treatment of cancer cells with binase leads to a reduction in reactive oxygen species and transcription factor NFκB levels, and demonstrated that these effects are a common feature of the action of RNases on cancer cells.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Endorribonucleases/administração & dosagem , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Bacillus/enzimologia , Humanos , Células Jurkat , NF-kappa B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
13.
Biochem Biophys Rep ; 7: 98-105, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28955895

RESUMO

Hepatitis C virus (HCV) is characterized by considerable genetic variability and, as a consequence, it has 6 genotypes and multitude of subtypes. HCV envelope glycoproteins are involved in the virion formation; the correct folding of these proteins plays the key role in virus infectivity. Glycosylation at certain sites of different genotypes HCV glycoproteins shows substantial differences in functions of the individual glycans (Goffard et al., 2005; Helle et al., 2010) [1], [2]. In this study, differential glycosylation sites of HCV genotype 1b envelope proteins in insect and mammalian cells was demonstrated. We showed that part of glycosylation sites was important for folding of the proteins involved in the formation of viral particles. Point mutations were introduced in the protein N-glycosylation sites of HCV (genotype 1b) and the mutant proteins were analyzed using baculovirus expression system in mammalian and insect cells. Our data showed that, in contrast to HCV 1a and 2a, the folding of HCV 1b envelope proteins E2 (sites N1, N2, N10) and E1 (sites N1, N5) was disrupted, however that did not prevent the formation of virus-like particles (VLP) with misfolded glycoproteins having densities typical for HCV particles containing RNA fragments. Experimental data are supported by mathematical modeling of the structure of E1 mutant variants.

14.
Mol Biol (Mosk) ; 49(6): 1052-5, 2015.
Artigo em Russo | MEDLINE | ID: mdl-26710790

RESUMO

Hallmark of neuroblastoma is an ability of this malignant tumor to undergo spontaneous regression or differentiation into benign tumor during any stage of the disease, but it is little known about mechanisms of these phenomena. We studied effect of receptor tyrosine kinase receptor KIT on expression of genes, which may be involved in tumor spontaneous regression. Downregulation of KIT expression by RNA interference in SH-SY5Y cells causes suppression of neurotrophin receptor NGFR expression that may promote the loss of sensibility of cells to nerve growth factors, also it causes upregulation of TrkA receptor expression which can stimulate cell differentiation or apoptosis in NGF dependent manner. Furthermore there is an upregulation of genes which stimulate malignant cell detection by immune system, such as genes of major histocompatibility complex HLA class I HLA-B and HLA-C, and interferon-γ receptors IFNGR1 and IFNGR2 genes. Thus KIT can mediate neuroblastoma cell sensibility to neurotrophins and immune system components--two factors directly contributing to spontaneous regression of neuroblastoma.


Assuntos
Regulação Neoplásica da Expressão Gênica , Regressão Neoplásica Espontânea/genética , Neuroblastoma/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Apoptose , Linhagem Celular Tumoral , Antígenos HLA/genética , Antígenos HLA/metabolismo , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuroblastoma/genética , Neuroblastoma/patologia , Proteínas Proto-Oncogênicas c-kit/genética , Receptor trkA/genética , Receptor trkA/metabolismo , Receptores de Interferon/genética , Receptores de Interferon/metabolismo , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo , Receptor de Interferon gama
15.
Mol Biol (Mosk) ; 49(6): 1048-51, 2015.
Artigo em Russo | MEDLINE | ID: mdl-26710789

RESUMO

In this study we evaluated c-kit, VEGFA, and MYC gene expression level in seven neuroblastoma stable cell lines: SK-N-SH, SK-N-BE, SK-N-AS, SH-SY5Y, Kelly, IMR-32, and LAN-1. Expression levels of these genes can serve as diagnostic factors of cancer progression, and proteins encoded by these genes are promising targets for neuroblastoma treatment. SH-SY5Y and SK-N-AS cells have highest MYC expression and the same VEGFA expression, although SH-SY5Y has 10 times higher c-kit expression than SK-N-AS cells. Both IMR-32 and LAN-1 cells have low MYC expression level, but differ in c-kit expression, IMR-32 has significantly higher c-kit expression, than any other neuroblastoma cell line. LAN-1 on the other hand has the highest VEGFA expression. These data suggest that MYC, c-kit, and VEGFA genes can play different roles in development and progression of neuroblastoma depending on other activated molecular mechanisms in malignant cells.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neuroblastoma/metabolismo , Linhagem Celular Tumoral , Humanos , Neuroblastoma/genética , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
Acta Naturae ; 7(1): 87-97, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25927005

RESUMO

The hepatitis C virus (HCV) envelope proteins E1 and E2, being virion components, are involved in the formation of infectious particles in infected cells. The detailed structure of the infectious particle of HCV remains poorly understood. Moreover, the virion assembly and release of virions by the cell are the least understood processes. It is believed that virion properties depend on glycosylation of the virus envelope proteins in a cell, while glycansat several glycosylation sites of these proteins play a pivotal role in protein functioning and the HCV life cycle. N-glycans of glycoproteins can influence viral particle formation, virus binding to cell surface, and HCV pathogenesis. We studied the effect of glycans on the folding ofthe E2 glycoprotein, formation of functional glycoprotein complexes and virus particles in insect and mammalian cells. In order to investigate these processes, point mutations of the N-glycosylation sites of HCV protein E2 (genotype 1b strain 274933RU) were generated and the mutant proteins were further analyzed in the baculovirus expression system. Elimination of the single glycosylation sites of the E2 glycoprotein, except for the N6 site, did not affect its synthesis efficiency in Sf9 insect cells, while the electrophoretic mobility of mutant proteins increased in proportion to the decrease in the number of glycosylation sites. The level of synthesis of HCV glycoprotein E2 in human HEK293T cells depended on the presence of glycans at the N1 and N8 glycosylation sites in contrast to Sf9 cells. At the same time, elimination of glycans at the N1, N2, and N10 sites led to the accumulation of unproductive E1E2 dimers as aggregates and productive assembly suppression of virus-like particles both in insect and mammalian cells. In addition, elimination of single glycosylation sites of HCV E2 had no impact on the RNA synthesis of structural proteins and formation of virus-like particles in insect and mammalian cells.

17.
Leukemia ; 28(11): 2222-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24727677

RESUMO

The t(8;21)(q22;q22) rearrangement represents the most common chromosomal translocation in acute myeloid leukemia (AML). It results in a transcript encoding for the fusion protein AML1-ETO (AE) with transcription factor activity. AE is considered to be an attractive target for treating t(8;21) leukemia. However, AE expression alone is insufficient to cause transformation, and thus the potential of such therapy remains unclear. Several genes are deregulated in AML cells, including KIT that encodes a tyrosine kinase receptor. Here, we show that AML cells transduced with short hairpin RNA vector targeting AE mRNAs have a dramatic decrease in growth rate that is caused by induction of apoptosis and deregulation of the cell cycle. A reduction in KIT mRNA levels was also observed in AE-silenced cells, but silencing KIT expression reduced cell growth but did not induce apoptosis. Transcription profiling of cells that escape cell death revealed activation of a number of signaling pathways involved in cell survival and proliferation. In particular, we find that the extracellular signal-regulated kinase 2 (ERK2; also known as mitogen-activated protein kinase 1 (MAPK1)) protein could mediate activation of 23 out of 29 (79%) of these upregulated pathways and thus may be regarded as the key player in establishing the t(8;21)-positive leukemic cells resistant to AE suppression.


Assuntos
Apoptose/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/genética , Proteínas de Fusão Oncogênica/genética , Proteínas Proto-Oncogênicas c-kit/genética , Transdução de Sinais/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo/genética , Células HEK293 , Humanos , Leucemia Mieloide Aguda/patologia , Modelos Genéticos , RNA Interferente Pequeno/genética , Proteína 1 Parceira de Translocação de RUNX1
18.
Mol Biol (Mosk) ; 48(2): 288-94, 2014.
Artigo em Russo | MEDLINE | ID: mdl-25850297

RESUMO

Two novel mutations in glucokinase (GCK) gene-G to C substitution at -1 position of intron 7 acceptor splice site (c. 864-1G>C) and synonymous substitution c. 666C>G (GTC>GTG, p.V222V) in exon 6--were identified in patients with monogenic diabetes MODY2 (Maturity Onset Diabetes of Young). GCK minigenes with these mutations were constructed. Analysis of splicing products upon transfection of minigenes into human embryonic cell line HEK293 has shown that each of these nucleotide substitutions impair normal splicing. Mutation c.864-1G>C blocks the usage of normal acceptor site which activates cryptic acceptor splice sites within intron 7 and generates aberrant RNAs containing the portions ofintron 7. Synonymous substitution c.666C>G creates novel donor splice site in exon 6 that leads to formation of defective GCK mRNA with deletion of 16 nucleotides of exon 6. Analysis of in vitro splicing of minigenes confirms the inactivating action of novel mutations on glucokinase expression.


Assuntos
Processamento Alternativo , Diabetes Mellitus Tipo 2/genética , Glucoquinase/genética , Mutação , Degradação do RNAm Mediada por Códon sem Sentido , Adolescente , Sequência de Bases , Diabetes Mellitus Tipo 2/patologia , Éxons , Expressão Gênica , Células HEK293 , Humanos , Íntrons , Dados de Sequência Molecular , Análise de Sequência de DNA , Deleção de Sequência , Adulto Jovem
19.
Mol Biol (Mosk) ; 48(2): 344-8, 2014.
Artigo em Russo | MEDLINE | ID: mdl-25850304

RESUMO

Here we describe a system based on recombinant lentiviral vectors for the safe screening of potential anti-HIV drugs. The system allows to evaluate the sensitivity of HIVl-1 reverse transcriptase and integrase (wild-type as well as mutant forms of these enzymes detected in drug-resistant virus isolates) towards different drugs and substances, but also to screen inhibitors of other stages of HIV-1 life cycle.


Assuntos
Fármacos Anti-HIV/farmacologia , Inibidores de Integrase de HIV/farmacologia , HIV-1/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Replicação Viral/efeitos dos fármacos , Farmacorresistência Viral , Citometria de Fluxo , Expressão Gênica , Genes Reporter , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Integrase de HIV/genética , Integrase de HIV/metabolismo , Transcriptase Reversa do HIV/antagonistas & inibidores , Transcriptase Reversa do HIV/genética , Transcriptase Reversa do HIV/metabolismo , HIV-1/enzimologia , HIV-1/genética , Humanos , Lentivirus/genética , Transdução Genética , Vírion/efeitos dos fármacos , Vírion/crescimento & desenvolvimento
20.
Acta Naturae ; 5(2): 7-18, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23819033

RESUMO

RNA interference is a convenient tool for modulating gene expression. The widespread application of RNA interference is made difficult because of the imperfections of the methods used for efficient target cell delivery of whatever genes are under study. One of the most convenient and efficient gene transfer and expression systems is based on the use of lentiviral vectors, which direct the synthesis of small hairpin RNAs (shRNAs), the precursors of siRNAs. The application of these systems enables one to achieve sustainable and long-term shRNA expression in cells. This review considers the adaptation of the processing of artificial shRNA to the mechanisms used by cellular microRNAs and simultaneous expression of several shRNAs as potential approaches for producing lentiviral vectors that direct shRNA synthesis. Approaches to using RNA interference for the treatment of cancer, as well as hereditary and viral diseases, are under active development today. The improvement made to the methods for constructing lentiviral vectors and the investigation into the mechanisms of processing of small interfering RNA allow one to now consider lentiviral vectors that direct shRNA synthesis as one of the most promising tools for delivering small interfering RNAs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...