Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Viruses ; 14(7)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35891531

RESUMO

Four seasonal human coronaviruses (sHCoVs) are endemic globally (229E, NL63, OC43, and HKU1), accounting for 5-30% of human respiratory infections. However, the epidemiology and evolution of these CoVs remain understudied due to their association with mild symptomatology. Using a multigene and complete genome analysis approach, we find the evolutionary histories of sHCoVs to be highly complex, owing to frequent recombination of CoVs including within and between sHCoVs, and uncertain, due to the under sampling of non-human viruses. The recombination rate was highest for 229E and OC43 whereas substitutions per recombination event were highest in NL63 and HKU1. Depending on the gene studied, OC43 may have ungulate, canine, or rabbit CoV ancestors. 229E may have origins in a bat, camel, or an unsampled intermediate host. HKU1 had the earliest common ancestor (1809-1899) but fell into two distinct clades (genotypes A and B), possibly representing two independent transmission events from murine-origin CoVs that appear to be a single introduction due to large gaps in the sampling of CoVs in animals. In fact, genotype B was genetically more diverse than all the other sHCoVs. Finally, we found shared amino acid substitutions in multiple proteins along the non-human to sHCoV host-jump branches. The complex evolution of CoVs and their frequent host switches could benefit from continued surveillance of CoVs across non-human hosts.


Assuntos
Infecções por Coronavirus , Coronavirus , Infecções Respiratórias , Animais , Coronavirus/genética , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Cães , Humanos , Camundongos , Coelhos , Estações do Ano , Análise de Sequência de DNA
2.
PLoS Pathog ; 18(6): e1010591, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35771775

RESUMO

In this review, we discuss the epidemiological dynamics of different viral infections to project how the transition from a pandemic to endemic Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) might take shape. Drawing from theories of disease invasion and transmission dynamics, waning immunity in the face of viral evolution and antigenic drift, and empirical data from influenza, dengue, and seasonal coronaviruses, we discuss the putative periodicity, severity, and age dynamics of SARS-CoV-2 as it becomes endemic. We review recent studies on SARS-CoV-2 epidemiology, immunology, and evolution that are particularly useful in projecting the transition to endemicity and highlight gaps that warrant further research.


Assuntos
COVID-19 , Pandemias , COVID-19/epidemiologia , Humanos , SARS-CoV-2
3.
iScience ; 25(3): 103880, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35156006

RESUMO

There is a dearth of information on COVID-19 disease dynamics in Africa. To fill this gap, we investigated the epidemiology and genetic diversity of SARS-CoV-2 lineages circulating in the continent. We retrieved 5229 complete genomes collected in 33 African countries from the GISAID database. We investigated the circulating diversity, reconstructed the viral evolutionary divergence and history, and studied the case and death trends in the continent. Almost a fifth (144/782, 18.4%) of Pango lineages found worldwide circulated in Africa, with five different lineages dominating over time. Phylogenetic analysis revealed that African viruses cluster more closely with those from Europe. We also identified two motifs that could function as integrin-binding sites and N-glycosylation domains. These results shed light on the epidemiological and evolutionary dynamics of the circulating viral diversity in Africa. They also emphasize the need to expand surveillance efforts in Africa to help inform and implement better public health measures.

4.
medRxiv ; 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34031660

RESUMO

COVID-19 disease dynamics have been widely studied in different settings around the globe, but little is known about these patterns in the African continent. To investigate the epidemiology and genetic diversity of SARS-CoV-2 lineages circulating in Africa, more than 2400 complete genomes from 33 African countries were retrieved from the GISAID database and analyzed. We investigated their diversity using various clade and lineage nomenclature systems, reconstructed their evolutionary divergence and history using maximum likelihood inference methods, and studied the case and death trends in the continent. We also examined potential repeat patterns and motifs across the sequences. In this study, we show that after almost one year of the COVID-19 pandemic, only 143 out of the 782 Pango lineages found worldwide circulated in Africa, with five different lineages dominating in distinct periods of the pandemic. Analysis of the number of reported deaths in Africa also revealed large heterogeneity across the continent. Phylogenetic analysis revealed that African viruses cluster closely with those from all continents but more notably with viruses from Europe. However, the extent of viral diversity observed among African genomes is closest to that of the Oceania outbreak, most likely due to genomic under-surveillance in Africa. We also identified two motifs that could function as integrin-binding sites and N-glycosylation domains. These results shed light on the evolutionary dynamics of the circulating viral strains in Africa, elucidate the functions of protein motifs present in the genome sequences, and emphasize the need to expand genomic surveillance efforts in the continent to better understand the molecular, evolutionary, epidemiological, and spatiotemporal dynamics of the COVID-19 pandemic in Africa.

5.
Vaccine ; 39(21): 2811-2820, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33895016

RESUMO

Respiratory syncytial virus (RSV) is the most common cause of serious lower respiratory tract illness in infants and children and causes significant disease in the elderly and immunocompromised. Recently there has been an acceleration in the development of candidate RSV vaccines, monoclonal antibodies and therapeutics. However, the effects of RSV genomic variability on the implementation of vaccines and therapeutics remain poorly understood. To address this knowledge gap, the National Institute of Allergy and Infectious Diseases and the Fogarty International Center held a workshop to summarize what is known about the global burden and transmission of RSV disease, the phylogeographic dynamics and genomics of the virus, and the networks that exist to improve the understanding of RSV disease. Discussion at the workshop focused on the implications of viral evolution and genomic variability for vaccine and therapeutics development in the context of various immunization strategies. This paper summarizes the meeting, highlights research gaps and future priorities, and outlines what has been achieved since the meeting took place. It concludes with an examination of what the RSV community can learn from our understanding of SARS-CoV-2 genomics and what insights over sixty years of RSV research can offer the rapidly evolving field of COVID-19 vaccines.


Assuntos
COVID-19 , Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Idoso , Vacinas contra COVID-19 , Criança , Genômica , Humanos , Lactente , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vírus Sincicial Respiratório Humano/genética , SARS-CoV-2
6.
PLoS Pathog ; 16(9): e1008583, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32970783

RESUMO

The prospect of universal influenza vaccines is generating much interest and research at the intersection of immunology, epidemiology, and viral evolution. While the current focus is on developing a vaccine that elicits a broadly cross-reactive immune response in clinical trials, there are important downstream questions about global deployment of a universal influenza vaccine that should be explored to minimize unintended consequences and maximize benefits. Here, we review and synthesize the questions most relevant to predicting the population benefits of universal influenza vaccines and discuss how existing information could be mined to begin to address these questions. We review three research topics where computational modeling could bring valuable evidence: immune imprinting, viral evolution, and transmission. We address the positive and negative consequences of imprinting, in which early childhood exposure to influenza shapes and limits immune responses to future infections via memory of conserved influenza antigens. However, the mechanisms at play, their effectiveness, breadth of protection, and the ability to "reprogram" already imprinted individuals, remains heavily debated. We describe instances of rapid influenza evolution that illustrate the plasticity of the influenza virus in the face of drug pressure and discuss how novel vaccines could introduce new selective pressures on the evolution of the virus. We examine the possible unintended consequences of broadly protective (but infection-permissive) vaccines on the dynamics of epidemic and pandemic influenza, compared to conventional vaccines that have been shown to provide herd immunity benefits. In conclusion, computational modeling offers a valuable tool to anticipate the benefits of ambitious universal influenza vaccine programs, while balancing the risks from endemic influenza strains and unpredictable pandemic viruses. Moving forward, it will be important to mine the vast amount of data generated in clinical studies of universal influenza vaccines to ensure that the benefits and consequences of these vaccine programs have been carefully modeled and explored.


Assuntos
Anticorpos Antivirais/imunologia , Pesquisa Biomédica/tendências , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Ensaios Clínicos como Assunto , Humanos , Influenza Humana/epidemiologia , Influenza Humana/imunologia , Influenza Humana/virologia
10.
Epidemics ; 26: 116-127, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30446431

RESUMO

Due to a combination of ecological, political, and demographic factors, the emergence of novel pathogens has been increasingly observed in animals and humans in recent decades. Enhancing global capacity to study and interpret infectious disease surveillance data, and to develop data-driven computational models to guide policy, represents one of the most cost-effective, and yet overlooked, ways to prepare for the next pandemic. Epidemiological and behavioral data from recent pandemics and historic scourges have provided rich opportunities for validation of computational models, while new sequencing technologies and the 'big data' revolution present new tools for studying the epidemiology of outbreaks in real time. For the past two decades, the Division of International Epidemiology and Population Studies (DIEPS) of the NIH Fogarty International Center has spearheaded two synergistic programs to better understand and devise control strategies for global infectious disease threats. The Multinational Influenza Seasonal Mortality Study (MISMS) has strengthened global capacity to study the epidemiology and evolutionary dynamics of influenza viruses in 80 countries by organizing international research activities and training workshops. The Research and Policy in Infectious Disease Dynamics (RAPIDD) program and its precursor activities has established a network of global experts in infectious disease modeling operating at the research-policy interface, with collaborators in 78 countries. These activities have provided evidence-based recommendations for disease control, including during large-scale outbreaks of pandemic influenza, Ebola and Zika virus. Together, these programs have coordinated international collaborative networks to advance the study of emerging disease threats and the field of computational epidemic modeling. A global community of researchers and policy-makers have used the tools and trainings developed by these programs to interpret infectious disease patterns in their countries, understand modeling concepts, and inform control policies. Here we reflect on the scientific achievements and lessons learnt from these programs (h-index = 106 for RAPIDD and 79 for MISMS), including the identification of outstanding researchers and fellows; funding flexibility for timely research workshops and working groups (particularly relative to more traditional investigator-based grant programs); emphasis on group activities such as large-scale modeling reviews, model comparisons, forecasting challenges and special journal issues; strong quality control with a light touch on outputs; and prominence of training, data-sharing, and joint publications.


Assuntos
Fortalecimento Institucional/métodos , Doenças Transmissíveis/epidemiologia , Influenza Aviária/epidemiologia , Influenza Humana/epidemiologia , Cooperação Internacional , Pandemias/estatística & dados numéricos , Animais , Aves , Humanos , Vacinas contra Influenza/uso terapêutico , Influenza Humana/prevenção & controle
11.
Vaccine ; 36(7): 932-938, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29221895

RESUMO

In August 2016, the World Health Organization (WHO) convened the "Eighth meeting on development of influenza vaccines that induce broadly protective and long-lasting immune responses" to discuss the regulatory requirements and pathways for licensure of next-generation influenza vaccines, and to identify areas where WHO can promote the development of such vaccines. Participants included approximately 120 representatives of academia, the vaccine industry, research and development funders, and regulatory and public health agencies. They reviewed the draft WHO preferred product characteristics (PPCs) of vaccines that could address prioritized unmet public health needs and discussed the challenges facing the development of such vaccines, especially for low- and middle-income countries (LMIC). They defined the data desired by public-health decision makers globally and explored how to support the progression of promising candidates into late-stage clinical trials and for all countries. This report highlights the major discussions of the meeting.


Assuntos
Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Ensaios Clínicos como Assunto , Humanos , Vacinas contra Influenza/efeitos adversos , Saúde Pública , Cobertura Vacinal , Organização Mundial da Saúde
12.
Vaccine ; 35(43): 5734-5737, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-28893473

RESUMO

In 2017, WHO convened a working group of global experts to develop the Preferred Product Characteristics (PPC) for Next-Generation Influenza Vaccines. PPCs are intended to encourage innovation in vaccine development. They describe WHO preferences for parameters of vaccines, in particular their indications, target groups, implementation strategies, and clinical data needed for assessment of safety and efficacy. PPCs are shaped by the global unmet public health need in a priority disease area for which WHO encourages vaccine development. These preferences reflect WHO's mandate to promote the development of vaccines with high public health impact and suitability in Low- and Middle-Income Countries (LMIC). The target audience is all entities intending to develop or to achieve widespread adoption of a specific influenza vaccine product in these settings. The working group determined that existing influenza vaccines are not well suited for LMIC use. While many developed country manufactures and research funders prioritize influenza vaccine products for use in adults and the elderly, most LMICs do not have sufficiently strong health systems to deliver vaccines to these groups. Policy makers from LMICs are expected to place higher value on vaccines indicated for prevention of severe illness, however the clinical development of influenza vaccines focuses on demonstrating prevention of any influenza illness. Many influenza vaccine products do not meet WHO standards for programmatic suitability of vaccines, which introduces challenges when vaccines are used in low-resource settings. And finally, current vaccines do not integrate well with routine immunization programs in LMICs, given age of vaccine licensure, arbitrary expiration dates timed for temperate country markets, and the need for year-round immunization in countries with prolonged influenza seasonality. While all interested parties should refer to the full PPC document for details, in this article we highlight data needs for new influenza vaccines to better demonstrate the value proposition in LMICs.


Assuntos
Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Humanos , Programas de Imunização/métodos , Pobreza , Saúde Pública/métodos , Vacinação/métodos , Organização Mundial da Saúde
14.
PLoS One ; 8(6): e65955, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23776579

RESUMO

BACKGROUND: Human influenza virus isolates generally grow poorly in embryonated chicken eggs. Hence, gene reassortment of influenza A wild type (wt) viruses is performed with a highly egg adapted donor virus, A/Puerto Rico/8/1934 (PR8), to provide the high yield reassortant (HYR) viral 'seeds' for vaccine production. HYR must contain the hemagglutinin (HA) and neuraminidase (NA) genes of wt virus and one to six 'internal' genes from PR8. Most studies of influenza wt and HYRs have focused on the HA gene. The main objective of this study is the identification of the molecular signature in all eight gene segments of influenza A HYR candidate vaccine seeds associated with high growth in ovo. METHODOLOGY: The genomes of 14 wt parental viruses, 23 HYRs (5 H1N1; 2, 1976 H1N1-SOIV; 2, 2009 H1N1pdm; 2 H2N2 and 12 H3N2) and PR8 were sequenced using the high-throughput sequencing pipeline with big dye terminator chemistry. RESULTS: Silent and coding mutations were found in all internal genes derived from PR8 with the exception of the M gene. The M gene derived from PR8 was invariant in all 23 HYRs underlining the critical role of PR8 M in high yield phenotype. None of the wt virus derived internal genes had any silent change(s) except the PB1 gene in X-157. The highest number of recurrent silent and coding mutations was found in NS. With respect to the surface antigens, the majority of HYRs had coding mutations in HA; only 2 HYRs had coding mutations in NA. SIGNIFICANCE: In the era of application of reverse genetics to alter influenza A virus genomes, the mutations identified in the HYR gene segments associated with high growth in ovo may be of great practical benefit to modify PR8 and/or wt virus gene sequences for improved growth of vaccine 'seed' viruses.


Assuntos
Genoma Viral/genética , Vírus da Influenza A/genética , Hemaglutininas/genética , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/imunologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Mutação , Neuraminidase/genética
15.
Emerg Infect Dis ; 18(7): 1089-95, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22709821

RESUMO

Coronaviruses are well known for their potential to change their host or tissue tropism, resulting in unpredictable new diseases and changes in pathogenicity; severe acute respiratory syndrome and feline coronaviruses, respectively, are the most recognized examples. Feline coronaviruses occur as 2 pathotypes: nonvirulent feline enteric coronaviruses (FECVs), which replicate in intestinal epithelium cells, and lethal feline infectious peritonitis viruses (FIPVs), which replicate in macrophages. Evidence indicates that FIPV originates from FECV by mutation, but consistent distinguishing differences have not been established. We sequenced the full genome of 11 viruses of each pathotype and then focused on the single most distinctive site by additionally sequencing hundreds of viruses in that region. As a result, we identified 2 alternative amino acid differences in the putative fusion peptide of the spike protein that together distinguish FIPV from FECV in >95% of cases. By these and perhaps other mutations, the virus apparently acquires its macrophage tropism and spreads systemically.


Assuntos
Coronavirus Felino/patogenicidade , Glicoproteínas de Membrana/genética , Mutação , Peptídeos/genética , Proteínas Recombinantes de Fusão/genética , Proteínas do Envelope Viral/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Gatos , Infecções por Coronavirus/virologia , Coronavirus Felino/genética , Coronavirus Felino/metabolismo , Peritonite Infecciosa Felina/virologia , Genoma Viral , Glicoproteínas de Membrana/metabolismo , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral/metabolismo , Virulência/genética
16.
Ecol Lett ; 15(1): 24-33, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22008513

RESUMO

Despite the importance of migratory birds in the ecology and evolution of avian influenza virus (AIV), there is a lack of information on the patterns of AIV spread at the intra-continental scale. We applied a variety of statistical phylogeographic techniques to a plethora of viral genome sequence data to determine the strength, pattern and determinants of gene flow in AIV sampled from wild birds in North America. These analyses revealed a clear isolation-by-distance of AIV among sampling localities. In addition, we show that phylogeographic models incorporating information on the avian flyway of sampling proved a better fit to the observed sequence data than those specifying homogeneous or random rates of gene flow among localities. In sum, these data strongly suggest that the intra-continental spread of AIV by migratory birds is subject to major ecological barriers, including spatial distance and avian flyway.


Assuntos
Migração Animal , Aves/virologia , Fluxo Gênico , Geografia , Vírus da Influenza A/genética , Influenza Aviária/transmissão , Animais , Aves/fisiologia , Genoma Viral , Influenza Aviária/virologia , América do Norte , Filogenia , Filogeografia , Isolamento Social
17.
Am J Trop Med Hyg ; 85(5): 961-3, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22049058

RESUMO

During the early months of 2009, a novel influenza A/H1N1 virus (pH1N1) emerged in Mexico and quickly spread across the globe. In October 2009, a 23-year-old male residing in central Cambodia was diagnosed with pH1N1. Subsequently, a cluster of four influenza-like illness cases developed involving three children who resided in his home and the children's school teacher. Base composition analysis of internal genes using reverse transcriptase polymerase chain reaction and electrospray ionization mass spectrometry revealed that specimens from two of the secondary victims were coinfected with influenza A/H3N2 and pH1N1. Phylogenetic analysis of the hemagglutinin genes from these isolated viruses showed that they were closely related to existing pH1N1 and A/H3N2 viruses circulating in the region. Genetic recombination was not evident within plaque-purified viral isolates on full genome sequencing. This incident confirms dual influenza virus infections and highlights the risk of zoonotic and seasonal influenza viruses to coinfect and possibly, reassort where they cocirculate.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Influenza Humana/epidemiologia , Influenza Humana/virologia , Adolescente , Camboja/epidemiologia , Criança , Análise por Conglomerados , Surtos de Doenças , Humanos , Masculino , Adulto Jovem
18.
PLoS One ; 6(6): e21740, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21738783

RESUMO

Adaptive evolution is characterized by positive and parallel, or repeated selection of mutations. Mouse adaptation of influenza A virus (IAV) produces virulent mutants that demonstrate positive and parallel evolution of mutations in the hemagglutinin (HA) receptor and non-structural protein 1 (NS1) interferon antagonist genes. We now present a genomic analysis of all 11 genes of 39 mouse adapted IAV variants from 10 replicate adaptation experiments. Mutations were mapped on the primary and structural maps of each protein and specific mutations were validated with respect to virulence, replication, and RNA polymerase activity. Mouse adapted (MA) variants obtained after 12 or 20-21 serial infections acquired on average 5.8 and 7.9 nonsynonymous mutations per genome of 11 genes, respectively. Among a total of 115 nonsynonymous mutations, 51 demonstrated properties of natural selection including 27 parallel mutations. The greatest degree of parallel evolution occurred in the HA receptor and ribonucleocapsid components, polymerase subunits (PB1, PB2, PA) and NP. Mutations occurred in host nuclear trafficking factor binding sites as well as sites of virus-virus protein subunit interaction for NP, NS1, HA and NA proteins. Adaptive regions included cap binding and endonuclease domains in the PB2 and PA polymerase subunits. Four mutations in NS1 resulted in loss of binding to the host cleavage and polyadenylation specificity factor (CPSF30) suggesting that a reduction in inhibition of host gene expression was being selected. The most prevalent mutations in PB2 and NP were shown to increase virulence but differed in their ability to enhance replication and demonstrated epistatic effects. Several positively selected RNA polymerase mutations demonstrated increased virulence associated with >300% enhanced polymerase activity. Adaptive mutations that control host range and virulence were identified by their repeated selection to comprise a defined model for studying IAV evolution to increased virulence in the mouse.


Assuntos
Genoma Viral/genética , Vírus da Influenza A/metabolismo , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Cães , Humanos , Vírus da Influenza A/genética , Camundongos , Proteínas Virais/genética , Virulência/genética
19.
Infect Genet Evol ; 11(7): 1586-94, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21712102

RESUMO

Group A human rotaviruses (RVs) remain the most frequently detected viral agents associated with acute gastroenteritis in infants and young children. Despite their medical importance, relatively few complete genome sequences have been determined for commonly circulating G/P-type strains (i.e., G1P[8], G2P[4], G3P[8], G4P[8], and G9P[8]). In the current study, we sequenced the genomes of 11 G4P[8] isolates from stool specimens that were collected in Washington, DC during the years of 1974-1991. We found that the VP7-VP4-VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5/6-encoding genes of all 11 G4P[8] RVs have the genotypes of G4-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1. By constructing phylogenetic trees for each gene, extensive intra-genotypic diversity was revealed among the G4P[8] RVs, and new sub-genotype gene alleles were identified. Several of these alleles are nearly identical to those of G3P[8] isolates previously sequenced from this same Washington, DC collection, strongly suggesting that the RVs underwent gene reassortment. On the other hand, we observed that some G4P[8] RVs exhibit completely different allele-based genome constellations, despite being collected during the same epidemic season; there was no evidence of gene reassortment between these strains. This observation extends our previous findings and supports the notion that stable, genetically-distinct clades of human RVs with the same G/P-type can co-circulate in a community. Interestingly, the sub-genotype gene alleles found in some of the DC RVs share a close evolutionary relationship with genes of more contemporary human strains. Thus, archival human RVs sequenced in this study might represent evolutionary precursors to modern-day strains.


Assuntos
Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/virologia , Rotavirus/classificação , Rotavirus/genética , Alelos , Pré-Escolar , District of Columbia/epidemiologia , Variação Genética , Genoma Viral , Humanos , Lactente , Epidemiologia Molecular , Dados de Sequência Molecular , Filogenia , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rotavirus/isolamento & purificação
20.
J Infect Dis ; 203(2): 168-74, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21288815

RESUMO

Mixed infections with seasonal influenza A virus strains are a common occurrence and an important source of genetic diversity. Prolonged viral shedding, as observed in immunocompromised individuals, can lead to mutational accumulation over extended periods. Recently, drug resistance was reported in immunosuppressed patients infected with the 2009 pandemic influenza A (H1N1) virus within a few days after oseltamivir treatment was initiated. To better understand the evolution and emergence of drug resistance in these circumstances, we used a deep sequencing approach to survey the viral population from an immunosuppressed patient infected with H1N1/2009 influenza and treated with neuraminidase inhibitors. This patient harbored 3 genetic variants from 2 phylogenetically distinct viral clades of pandemic H1N1/2009, strongly suggestive of mixed infection. Strikingly, one of these variants also developed drug resistance de novo in response to oseltamivir treatment. Immunocompromised individuals may, therefore, constitute an important source of genetic and phenotypic diversity, both through mixed infection and de novo mutation.


Assuntos
Antivirais/farmacologia , Biodiversidade , Farmacorresistência Viral , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/virologia , Oseltamivir/farmacologia , Adolescente , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hospedeiro Imunocomprometido , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/epidemiologia , Masculino , Dados de Sequência Molecular , Pandemias , Filogenia , RNA Viral/genética , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...