Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38138306

RESUMO

This work demonstrates that microbial fuel cells (MFCs), optimized for energy recovery, can be used as an effective tool to detect antibiotics in water-based environments. In MFCs, electroactive biofilms function as biocatalysts by converting the chemical energy of organic matter, which serves as the fuel, into electrical energy. The efficiency of the conversion process can be significantly affected by the presence of contaminants that act as toxicants to the biofilm. The present work demonstrates that MFCs can successfully detect antibiotic residues in water and water-based electrolytes containing complex carbon sources that may be associated with the food industry. Specifically, honey was selected as a model fuel to test the effectiveness of MFCs in detecting antibiotic contamination, and tetracycline was used as a reference antibiotic within this study. The results show that MFCs not only efficiently detect the presence of tetracycline in both acetate and honey-based electrolytes but also recover the same performance after each exposure cycle, proving to be a very robust and reliable technology for both biosensing and energy recovery.

2.
Nanomaterials (Basel) ; 13(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37999281

RESUMO

This work investigates the optimization of carbon-based electrodes employed in bio-electrochemical systems (BES) through the deposition of nanostructured layers of poly(3,4-ethylene-dioxy-thiophene) poly(styrene-sulfonate) (PEDOT:PSS) on commercial carbon paper electrodes via ultrasonic spray coating (USC). This innovative application of USC demonstrated that uniform and controlled depositions of PEDOT:PSS can be successfully performed on carbon-based electrodes. To this end, the morphology and spatial uniformity of depositions were verified via scanning electron microscopy and Raman spectroscopy. Electrochemical characterizations of fabricated electrodes demonstrated a more than two-fold increase in the electrochemical active surface area with respect to bare carbon paper. A lab-scale experiment on BES was performed, selecting microbial fuel cells (MFCs) as the reference devices. Devices featuring USC-deposited PEDOT:PSS electrodes showed a three-fold-higher energy recovery with respect to control cells, reaching a maximum value of (13 ± 2) J·m-3. Furthermore, the amount of PEDOT:PSS required to optimize MFCs' performance is in line with values reported in the literature for other deposition methods. In conclusion, this work demonstrates that USC is a promising technique for application in BES.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...