Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(1): 105529, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043796

RESUMO

Clostridioides difficile is the leading cause of antibiotic-associated diarrhea worldwide with significant morbidity and mortality. This organism is naturally resistant to several beta-lactam antibiotics that inhibit the polymerization of peptidoglycan, an essential component of the bacteria cell envelope. Previous work has revealed that C. difficile peptidoglycan has an unusual composition. It mostly contains 3-3 cross-links, catalyzed by enzymes called L,D-transpeptidases (Ldts) that are poorly inhibited by beta-lactams. It was therefore hypothesized that peptidoglycan polymerization by these enzymes could underpin antibiotic resistance. Here, we investigated the catalytic activity of the three canonical Ldts encoded by C. difficile (LdtCd1, LdtCd2, and LdtCd3) in vitro and explored their contribution to growth and antibiotic resistance. We show that two of these enzymes catalyze the formation of novel types of peptidoglycan cross-links using meso-diaminopimelic acid both as a donor and an acceptor, also observed in peptidoglycan sacculi. We demonstrate that the simultaneous deletion of these three genes only has a minor impact on both peptidoglycan structure and resistance to beta-lactams. This unexpected result therefore implies that the formation of 3-3 peptidoglycan cross-links in C. difficile is catalyzed by as yet unidentified noncanonical Ldt enzymes.


Assuntos
Proteínas de Bactérias , Clostridioides difficile , Peptidoglicano , Peptidil Transferases , Proteínas de Bactérias/química , Resistência beta-Lactâmica , beta-Lactamas/farmacologia , Catálise , Clostridioides difficile/enzimologia , Clostridioides difficile/genética , Peptidoglicano/química , Peptidil Transferases/química , Peptidil Transferases/genética
2.
mBio ; 14(2): e0024323, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37017518

RESUMO

Clostridioides difficile remains a key cause of healthcare-associated infection, with multidrug-resistant (MDR) lineages causing high-mortality (≥20%) outbreaks. Cephalosporin treatment is a long-established risk factor, and antimicrobial stewardship is a key control. A mechanism underlying raised cephalosporin MICs has not been identified in C. difficile, but among other species, this is often acquired via amino acid substitutions in cell wall transpeptidases (penicillin binding proteins [PBPs]). Here, we investigated five C. difficile transpeptidases (PBP1 to PBP5) for recent substitutions, associated cephalosporin MICs, and co-occurrence with fluoroquinolone resistance. Previously published genome assemblies (n = 7,096) were obtained, representing 16 geographically widespread lineages, including healthcare-associated ST1(027). Recent amino acid substitutions were found within PBP1 (n = 50) and PBP3 (n = 48), ranging from 1 to 10 substitutions per genome. ß-Lactam MICs were measured for closely related pairs of wild-type and PBP-substituted isolates separated by 20 to 273 single nucleotide polymorphisms (SNPs). Recombination-corrected phylogenies were constructed to date substitution acquisition. Key substitutions such as PBP3 V497L and PBP1 T674I/N/V emerged independently across multiple lineages. They were associated with extremely high cephalosporin MICs; 1 to 4 doubling dilutions >wild-type, up to 1,506 µg/mL. Substitution patterns varied by lineage and clade, showed geographic structure, and occurred post-1990, coincident with the gyrA and/or gyrB substitutions conferring fluoroquinolone resistance. In conclusion, recent PBP1 and PBP3 substitutions are associated with raised cephalosporin MICs in C. difficile. Their co-occurrence with fluoroquinolone resistance hinders attempts to understand the relative importance of these drugs in the dissemination of epidemic lineages. Further controlled studies of cephalosporin and fluoroquinolone stewardship are needed to determine their relative effectiveness in outbreak control. IMPORTANCE Fluoroquinolone and cephalosporin use in healthcare settings has triggered outbreaks of high-mortality, multidrug-resistant C. difficile infection. Here, we identify a mechanism associated with raised cephalosporin MICs in C. difficile comprising amino acid substitutions in two cell wall transpeptidase enzymes (penicillin binding proteins). The higher the number of substitutions, the greater the impact on phenotype. Dated phylogenies revealed that substitutions associated with raised cephalosporin and fluoroquinolone MICs were co-acquired immediately before clinically important outbreak strains emerged. PBP substitutions were geographically structured within genetic lineages, suggesting adaptation to local antimicrobial prescribing. Antimicrobial stewardship of cephalosporins and fluoroquinolones is an effective means of C. difficile outbreak control. Genetic changes associated with raised MIC may impart a "fitness cost" after antibiotic withdrawal. Our study therefore identifies a mechanism that may explain the contribution of cephalosporin stewardship to resolving outbreak conditions. However, due to the co-occurrence of raised cephalosporin MICs and fluoroquinolone resistance, further work is needed to determine the relative importance of each.


Assuntos
Clostridioides difficile , Peptidil Transferases , Fluoroquinolonas/farmacologia , Proteínas de Ligação às Penicilinas/genética , Clostridioides , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Monobactamas/farmacologia , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...