Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transbound Emerg Dis ; 69(5): e1854-e1864, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35357094

RESUMO

Antibodies against Phlebotomus perniciosus sandfly salivary gland homogenate (SGH) and recombinant protein rSP03B, sandfly-borne Toscana virus (TOSV), Sandfly Fever Sicilian virus (SFSV) and Leishmania, as well as DNA of the latter parasite, were investigated in 670 blood samples from 575 human donors in Murcia Region, southeast Spain, in 2017 and 2018. The estimated SGH and rSP03B seroprevalences were 69% and 88%, respectively, although correlation between test results was relatively low (ρ = 0.39). Similarly, TOSV, SFSV and Leishmania seroprevalences were 26%, 0% and 1%, respectively, and Leishmania PCR prevalence was 2%. Prevalences were significantly greater in 2017, overdispersed and not spatially related to each other although both were positively associated with SGH but not to rSP03B antibody optical densities, questioning the value of the latter as a diagnostic marker for these infections in humans.


Assuntos
Leishmania infantum , Leishmaniose , Phlebotomus , Psychodidae , Vírus da Febre do Flebótomo Napolitano , Animais , Anticorpos , Doadores de Sangue , Humanos , Leishmaniose/parasitologia , Leishmaniose/veterinária , Phlebotomus/parasitologia , Proteínas Recombinantes , Vírus da Febre do Flebótomo Napolitano/genética , Espanha/epidemiologia
2.
Transbound Emerg Dis ; 69(3): 1073-1083, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33686765

RESUMO

In Morocco, leishmaniases are a major public health problem due to their genetic diversity and geographical distribution. Cutaneous leishmaniasis (CL) is an infectious disease caused by various species of Leishmania and transmitted typically by bite of phlebotomine sand flies. This study identifies sand fly fauna in Ibaraghen village, province of Azilal, which is a focus of CL, by combination of morphological and molecular methods (sequencing of COI gene, MALDI-TOF MS protein profiling). Nested-kDNA PCR was used to detect and identify Leishmania species within potential vector species. 432 CDC light traps were placed at different heights above ground level at four capture sites during a whole year. Traps at 1.5 m above the ground yielded capture of sand flies almost double compared to above ground level (29.33%), while the collection reached 55.09% when the traps were placed 2.5 m above ground. A total of 2,830 sand flies were collected, 2,213 unfed specimens were morphologically identified, 990 males (44.73%) and 1,223 females (55.26%) of 13 species; ten Phlebotomus species and three Sergentomyia species. Six species were analysed by MALDI-TOF MS protein profiling (4 Phlebotomus and 2 Sergentomiya species), and their identification was confirmed by COI sequencing. 1,375 unfed females were screened for the presence of Leishmania by nested-kDNA PCR in pools, 11/30 pools of P. sergenti showing a single band of 750 bp corresponding to L. tropica. Our results confirm the role of P. sergenti as a proven vector in Azilal focus of cutaneous leishmaniasis; however, the relative abundance of other species known as vectors of Leishmania species emphasizes the risk of introduction of L. infantum and L. major in this province. For the first time in Morocco, a combined approach to identify sand flies by both morphology and molecular methods based on DNA barcoding and MALDI-TOF MS protein profiling was applied.


Assuntos
Leishmania , Leishmaniose Cutânea , Phlebotomus , Psychodidae , Animais , DNA de Cinetoplasto , Feminino , Insetos Vetores , Leishmania/genética , Leishmaniose Cutânea/epidemiologia , Leishmaniose Cutânea/veterinária , Masculino , Marrocos/epidemiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/veterinária
3.
Virulence ; 12(1): 852-867, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33724149

RESUMO

Catalase is one of the most abundant enzymes on Earth. It decomposes hydrogen peroxide, thus protecting cells from dangerous reactive oxygen species. The catalase-encoding gene is conspicuously absent from the genome of most representatives of the family Trypanosomatidae. Here, we expressed this protein from the Leishmania mexicana Β-TUBULIN locus using a novel bicistronic expression system, which relies on the 2A peptide of Teschovirus A. We demonstrated that catalase-expressing parasites are severely compromised in their ability to develop in insects, to be transmitted and to infect mice, and to cause clinical manifestation in their mammalian host. Taken together, our data support the hypothesis that the presence of catalase is not compatible with the dixenous life cycle of Leishmania, resulting in loss of this gene from the genome during the evolution of these parasites.


Assuntos
Catalase/genética , Leishmania mexicana/crescimento & desenvolvimento , Leishmania mexicana/patogenicidade , Estágios do Ciclo de Vida/genética , Proteínas de Protozoários/genética , Fatores de Virulência/genética , Animais , Catalase/metabolismo , Células Cultivadas , Feminino , Leishmania mexicana/genética , Camundongos , Camundongos Endogâmicos BALB C , Psychodidae/parasitologia , Teschovirus/genética , Virulência , Fatores de Virulência/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-32984064

RESUMO

Phlebotomus perniciosus (Diptera: Phlebotominae) is a medically and veterinary important insect vector. It transmits the unicellular parasite Leishmania infantum that multiplies intracellularly in macrophages causing life-threatening visceral diseases. Leishmania establishment in the vertebrate host is substantially influenced by immunomodulatory properties of vector saliva that are obligatorily co-injected into the feeding site. The repertoire of P. perniciosus salivary molecules has already been revealed and, subsequently, several salivary proteins have been expressed. However, their immunogenic properties have never been studied. In our study, we tested three P. perniciosus recombinant salivary proteins-an apyrase rSP01 and yellow-related proteins rSP03 and rSP03B-and showed their anti-inflammatory nature on the murine bone-marrow derived macrophages. Even in the presence of pro-inflammatory stimuli (IFN-γ and bacterial lipopolysaccharide, LPS), all three recombinant proteins inhibited nitric oxide production. Moreover, rSP03 seems to have a very strong anti-inflammatory effect since it enhanced arginase activity, increased the production of IL-10, and inhibited the production of TNF-α even in macrophages stimulated with IFN-γ and LPS. These results suggest that P. perniciosus apyrase and yellow-related proteins may serve as enhancing factors in sand fly saliva, facilitating the development of Leishmania infection along with their anti-haemostatic properties. Additionally, rSP03 and rSP03B did not elicit the delayed-type hypersensitivity response in mice pre-exposed to P. perniciosus bites (measured as visible skin reaction). The results of our study may help to understand the potential function of recombinant's native counterparts and their role in Leishmania transmission and establishment within the host.


Assuntos
Phlebotomus , Animais , Anti-Inflamatórios , Cães , Macrófagos , Camundongos , Fenótipo , Proteínas Recombinantes , Proteínas e Peptídeos Salivares
5.
Microorganisms ; 8(9)2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32962237

RESUMO

The clinical manifestation of leishmaniases depends on parasite species, host genetic background, and immune response. Manifestations of human leishmaniases are highly variable, ranging from self-healing skin lesions to fatal visceral disease. The scope of standard model hosts is insufficient to mimic well the wide disease spectrum, which compels the introduction of new model animals for leishmaniasis research. In this article, we study the susceptibility of three Asian rodent species (Cricetulus griseus, Lagurus lagurus, and Phodopus sungorus) to Leishmania major and L. donovani. The external manifestation of the disease, distribution, as well as load of parasites and infectiousness to natural sand fly vectors, were compared with standard models, BALB/c mice and Mesocricetus auratus. No significant differences were found in disease outcomes in animals inoculated with sand fly- or culture-derived parasites. All Asian rodent species were highly susceptible to L. major. Phodopus sungorus showed the non-healing phenotype with the progressive growth of ulcerative lesions and massive parasite loads. Lagurus lagurus and C. griseus represented the healing phenotype, the latter with high infectiousness to vectors, mimicking best the character of natural reservoir hosts. Both, L. lagurus and C. griseus were also highly susceptible to L. donovani, having wider parasite distribution and higher parasite loads and infectiousness than standard model animals.

6.
Parasit Vectors ; 13(1): 237, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32381071

RESUMO

BACKGROUND: During blood feeding, sand flies inoculate salivary proteins that interact with the host haemostatic system. The blocking of biogenic amines such as serotonin and histamine helps to limit vasodilatation and clot formation, and thus enables the insect to finish the blood-feeding process. In sand flies, an amine-binding ability is known only for the yellow-related proteins of Phlebotomus and Lutzomyia vectors, but not yet for members of the genus Sergentomyia. METHODS: The ability of Phlebotomus argentipes and Sergentomyia schwetzi recombinant yellow-related salivary proteins to bind histamine and serotonin was measured by microscale thermophoresis. Both sand fly species were also fed through a chicken-skin membrane on blood mixed with histamine or serotonin in order to check the effects of biogenic amines on sand fly fitness. Additionally, fecundity and mortality were compared in two groups of P. argentipes females fed on repeatedly-bitten and naive hamsters, respectively. RESULTS: The P. argentipes recombinant yellow-related protein PagSP04 showed high binding affinity to serotonin and low affinity to histamine. No binding activity was detected for two yellow-related proteins of S. schwetzi. Elevated concentrations of serotonin significantly reduced the amount of eggs laid by P. argentipes when compared to the control. The fecundity of S. schwetzi and the mortality of both sand fly species were not impaired after the experimental membrane feeding. Additionally, there were no differences in oviposition or mortality between P. argentipes females fed on immunized or naive hamsters. CONCLUSIONS: Our results suggest that in natural conditions sand flies are able to cope with biogenic amines or anti-saliva antibodies without any influence on their fitness. The serotonin binding by salivary yellow-related proteins may play an important role in Phlebotomus species feeding on mammalian hosts, but not in S. schwetzi, which is adapted to reptiles.


Assuntos
Aminas Biogênicas , Psychodidae/metabolismo , Proteínas e Peptídeos Salivares , Animais , Anticorpos , Aminas Biogênicas/sangue , Aminas Biogênicas/farmacologia , Sangue/metabolismo , Cricetinae , Evolução Molecular , Fertilidade/efeitos dos fármacos , Histamina/sangue , Mordeduras e Picadas de Insetos/imunologia , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Mamíferos , Mortalidade , Phlebotomus/metabolismo , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Répteis , Saliva/imunologia , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/metabolismo , Serotonina/sangue
7.
Parasit Vectors ; 13(1): 129, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32312306

RESUMO

BACKGROUND: Canine leishmaniosis caused by Leishmania infantum is a neglected zoonosis transmitted by sand flies like Phlebotomus perniciosus. Clinical signs and disease susceptibility vary according to various factors, including host immune response and breed. In particular, Ibizan hounds appear more resistant. This immunocompetence could be attributed to a more frequent exposure to uninfected sand flies, eliciting a stronger anti-sand fly saliva antibody response. METHODS: This study aimed to investigate the prevalence of anti-P. perniciosus saliva antibodies in Ibizan hounds and dogs of other breeds in the Leishmania-endemic area of Mallorca, Spain, and to correlate these antibody levels with clinical, immunological and parasitological parameters. Anti-sand fly saliva IgG was examined in 47 Ibizan hounds and 45 dogs of other breeds using three methods: P. perniciosus whole salivary gland homogenate (SGH) ELISA; recombinant protein rSP03B ELISA; and rSP03B rapid tests (RT). Additionally, diagnostic performance was evaluated between methods. RESULTS: Results indicate significantly higher anti-SGH antibodies (P = 0.0061) and a trend for more positive SGH ELISA and RT results in Ibizan hounds compared to other breeds. General linear model analysis also found breed to be a significant factor in SGH ELISA units and a marginally significant factor in RT result. Although infection rates were similar between groups, Ibizan hounds included significantly more IFN-γ producers (P = 0.0122) and papular dermatitis cases (P < 0.0001). Older age and L. infantum seropositivity were also considered significant factors in sand fly saliva antibody levels according to at least one test. Fair agreement was found between all three tests, with the highest value between SGH and rSP03B RT. CONCLUSIONS: To our knowledge, this is the first study elaborating the relationship between anti-P. perniciosus saliva antibodies and extensive clinical data in dogs in an endemic area. Our results suggest that Ibizan hounds experience a higher frequency of exposure to sand flies and have a stronger cellular immune response to L. infantum infection than other breed dogs. Additional sampling is needed to confirm results, but anti-P. perniciosus saliva antibodies appear to negatively correlate with susceptibility to L. infantum infection and could possibly contribute to the resistance observed in Ibizan hounds.


Assuntos
Imunoglobulina G/imunologia , Proteínas de Insetos/imunologia , Leishmaniose/veterinária , Phlebotomus/imunologia , Saliva/imunologia , Proteínas e Peptídeos Salivares/imunologia , Animais , Cruzamento , Suscetibilidade a Doenças , Doenças do Cão/imunologia , Doenças do Cão/parasitologia , Cães , Doenças Endêmicas , Feminino , Leishmaniose/imunologia , Masculino , Espanha , Zoonoses/parasitologia , Zoonoses/transmissão
8.
J Med Entomol ; 57(2): 601-607, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-31702779

RESUMO

Sand flies (Diptera: Psychodidae) are natural vectors of Leishmania. For the initiation of sand fly experimental infections either Leishmania amastigotes or promastigotes can be used. In order to obtain comparable results, it is necessary to adjust and standardize procedures. During this study, we conducted promastigote- and amastigote-initiated infections of Leishmania infantum Nicolle, 1908 parasites in Phlebotomus (Larroussius) perniciosus Newstead, 1911 in two laboratories with different levels of biosafety protection. Protocol originally designed for a biosafety level 2 facility was modified for biosafety level 3 facility and infection parameters were compared. Particularly, specially designed plastic containers were used for blood feeding; feeders were placed outside the sand fly cage, on the top of the mesh; feeding was performed inside the climatic chamber; separation of engorged females was done in Petri dishes kept on ice; engorged females were kept in the cardboard containers until dissection. All experiments, conducted in both laboratories, resulted in fully developed late stage infections with high number of parasites and colonization of the stomodeal valve. We demonstrated that protocol originally designed for biosafety level 2 facilities can be successfully modified for other biosafety facilities, depending on the special requirements of the individual institution/laboratory.


Assuntos
Laboratórios , Leishmania infantum/fisiologia , Phlebotomus/parasitologia , Animais , Contenção de Riscos Biológicos , Feminino , Leishmania infantum/crescimento & desenvolvimento
9.
Int J Parasitol Parasites Wildl ; 11: 40-45, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31879594

RESUMO

Visceral leishmaniasis caused by Leishmania donovani is regarded as mostly anthroponotic, but a role for animal reservoir hosts in transmission has been suggested in East Africa. Field studies in this region have shown the presence of this parasite in several mammalian species, including rodents of the genera Arvicanthis and Mastomys. Further, the natural reservoirs of Leishmania (Mundinia) sp. causing human cutaneous disease in Ghana, West Africa, are unknown. This study assessed the potential role of the Sub-Saharan rodents Arvicanthis neumanni, A. niloticus and Mastomys natalensis as hosts of L. donovani and L. sp. from Ghana, based on experimental infections of animals and xenodiagnoses. The distribution and load of parasites were determined post mortem using qPCR from the blood, skin and viscera samples. The attractiveness of Arvicanthis and Mastomys to Phlebotomus orientalis was tested by pair-wise comparisons. None of the animals inoculated with L. donovani were infectious to P. orientalis females, although, in some animals, parasites were detected by PCR even 30 weeks post infection. Skin infections were characterized by low numbers of parasites while high parasite burdens were present in spleen, liver and lymph nodes only. Therefore, wild Arvicanthis and Mastomys found infected with L. donovani, should be considered parasite sinks rather than parasite reservoirs. This is indirectly supported also by results of host choice experiments with P. orientalis in which females preferred humans over both Arvicanthis and Mastomys, and their feeding rates on rodents ranged from 1.4 to 5.8% only. Therefore, the involvement of these rodents in transmission of L. donovani by P. orientalis is very unlikely. Similarly, poor survival of Leishmania parasites in the studied rodents and negative results of xenodiagnostic experiments do not support the involvement of Arvicanthis and Mastomys spp. in the transmission cycle of L. sp. from Ghana.

10.
Pathogens ; 8(4)2019 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-31744234

RESUMO

Protein phosphorylation/dephosphorylation is an important regulatory mechanism that controls many key physiological processes. Numerous pathogens successfully use kinases and phosphatases to internalize, replicate, and survive, modifying the host's phosphorylation profile or signal transduction pathways. Multiple phosphatases and kinases from diverse bacterial pathogens have been implicated in human infections before. In this work, we have identified and characterized the dual specificity protein/lipid phosphatase LmDUSP1 as a novel virulence factor governing Leishmania mexicana infection. The LmDUSP1-encoding gene (LmxM.22.0250 in L. mexicana) has been acquired from bacteria via horizontal gene transfer. Importantly, its orthologues have been associated with virulence in several bacterial species, such as Mycobacterium tuberculosis and Listeria monocytogenes. Leishmania mexicana with ablated LmxM.22.0250 demonstrated severely attenuated virulence in the experimental infection of primary mouse macrophages, suggesting that this gene facilitates Leishmania pathogenicity in vertebrates. Despite significant upregulation of LmxM.22.0250 expression in metacyclic promastigotes, its ablation did not affect the ability of mutant cells to differentiate into virulent stages in insects. It remains to be further investigated which specific biochemical pathways involve LmDUSP1 and how this facilitates the parasite's survival in the host. One of the interesting possibilities is that LmDUSP1 may target host's substrate(s), thereby affecting its signal transduction pathways.

11.
PLoS Negl Trop Dis ; 13(11): e0007832, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31751334

RESUMO

BACKGROUND: Canine leishmaniasis (CanL) is a severe chronic disease caused by Leishmania infantum and transmitted by sand flies of which the main vector in the Western part of the Mediterranean basin is Phlebotomus perniciosus. Previously, an immunochromatographic test (ICT) was proposed to allow rapid evaluation of dog exposure to P. perniciosus. In the present study, we optimized the prototype and evaluated the detection accuracy of the ICT in field conditions. Possible cross-reactions with other hematophagous arthropods were also assessed. METHODOLOGY/PRINCIPAL FINDINGS: The ICT was optimized by expressing the rSP03B protein in a HEK293 cell line, which delivered an increased specificity (94.92%). The ICT showed an excellent reproducibility and inter-person reliability, and was optimized for use with whole canine blood which rendered an excellent degree of agreement with the use of serum. Field detectability of the ICT was assessed by screening 186 dogs from different CanL endemic areas with both the SGH-ELISA and the ICT, and 154 longitudinally sampled dogs only with the ICT. The ICT results corresponded to the SGH-ELISA for most areas, depending on the statistical measure used. Furthermore, the ICT was able to show a clear seasonal fluctuation in the proportion of bitten dogs. Finally, we excluded cross-reactions between non-vector species and confirmed favorable cross-reactions with other L. infantum vectors belonging to the subgenus Larroussius. CONCLUSIONS/SIGNIFICANCE: We have successfully optimized the ICT, now also suitable to be used with whole canine blood. The test is able to reflect the seasonal fluctuation in dog exposure and showed a good detectability in a field population of naturally exposed dogs, particularly in areas with a high seroprevalence of bitten dogs. Furthermore, our study showed the existence of favorable cross-reactions with other sand fly vectors thereby expanding its use in the field.


Assuntos
Doenças do Cão/diagnóstico , Imunoensaio/métodos , Insetos Vetores/fisiologia , Leishmaniose/veterinária , Phlebotomus/fisiologia , Animais , Doenças do Cão/sangue , Doenças do Cão/parasitologia , Cães , Feminino , Insetos Vetores/parasitologia , Leishmania infantum/fisiologia , Leishmaniose/sangue , Leishmaniose/diagnóstico , Leishmaniose/parasitologia , Camundongos Endogâmicos BALB C , Phlebotomus/parasitologia
12.
Microorganisms ; 7(9)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514266

RESUMO

Phlebotomine sand fly-borne pathogens such as Leishmania spp. and phleboviruses are emerging threats to humans and animals worldwide. The aim of this work was to evaluate the exposure of cats from Portugal to Toscana virus (TOSV) and Sandfly Fever Sicilian virus (SFSV) and assess the associated risk factors. The possible association between exposure to Phlebotomus perniciosus saliva with TOSV and SFSV was also investigated. Out of 369 cats tested, 18 (4.9%, n = 365) were seropositive for TOSV, and eight (2.2%, n = 367) were seropositive for SFSV. Multivariate logistic regression analysis showed that cats presenting clinical signs that were compatible with leishmaniosis and antibodies to TOSV had a significantly higher risk of being SFSV seropositive. The presence of antibodies to sand fly-borne viruses in cats indicate that these animals are frequently exposed to sand flies and transmitted pathogens. Data suggest that cats can be used to qualitatively monitor human exposure to TOSV and SFSV in endemic areas. The clinical impact of SFSV in cats' health should be investigated. The identification of the sand fly species responsible for the circulation of TOSV and SFSV in nature and the evaluation of the vectorial competence of P. perniciosus to SFSV should also be addressed.

13.
Viruses ; 11(4)2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970559

RESUMO

Background: Massilia virus (MASV) is a phlebovirus isolated from Phlebotomus perniciosus in various regions of southwestern Europe. It is closely related to human pathogens such as Toscana virus and sandfly fever Naples virus. The natural cycle of phleboviruses is poorly understood. Indeed, experimental studies demonstrate that transovarial and sexual transmission are not efficient enough for the maintenance of the virus in nature and to date there is no convincing evidence that a species of vertebrates is the reservoir of the virus. Here, we studied various transmission routes of MASV taking advantage of experimental colonies representing different species of sand flies. Methodology/Principal findings: In P. perniciosus, four sources of infection were compared: (i) Virus-seeded larval food to the first instar larvae (L1), or (ii) to the fourth instar larvae (L4), (iii) virus-seeded blood meal to adult females, and (iv) virus-seeded sugar meal to adults of both sexes. From 875 adults emerged from infected L1 and L4, only three were positive. In females infected by bloodmeal the infection rate was high before defecation, then it decreased drastically; MASV RNA was detected in only 5 out of 27 post-defecation. Surprisingly, the most efficient route of infection was observed after intake of virus-seeded sugar meal: 72% of females (79/110) and 52% of males (51/99) were found to be MASV RNA-positive. In addition, MASV-infected sandflies regurgitated virus particules into the sugar drop and MASV RNA was detectable in this drop for at least 24 h after regurgitation. MASV RNA was detected in about one third of the P. perniciosus exposed to this sugar drop contaminated by regurgitation. Sugar meal infection was also tested with six other species of sand flies. In males, there were no significant differences in infection rates when compared to P. perniciosus. In females, most species tested showed high infection rate at the beginning but then significant gradual decrease in infection rate during the experiment. Conclusions/Significance: We present the first description of arboviral infection of a dipteran vector using sugar meal. In all seven sand fly species tested, MASV was detected for two weeks post-infection. Our results showed that MASV can be transmitted between P. perniciosus either through co-feeding or via an infected sugar source such as plant sap. These newly described routes of horizontal transmission may play an important role in the circulation of phleboviruses in nature.


Assuntos
Comportamento Alimentar , Contaminação de Alimentos , Insetos Vetores/virologia , Febre por Flebótomos/transmissão , Phlebovirus/isolamento & purificação , Psychodidae/virologia , Animais , Fômites/virologia , Insetos Vetores/fisiologia , Refeições , Phlebovirus/crescimento & desenvolvimento , Psychodidae/fisiologia , Açúcares
14.
Parasit Vectors ; 12(1): 128, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30909940

RESUMO

BACKGROUND: Zoonotic leishmaniosis, caused by the protozoan Leishmania infantum, is a public and animal health problem in Asia, Central and South America, the Middle East and the Mediterranean Basin. Several phlebotomine sand fly species from the subgenus Larroussius are vectors of L. infantum. Data from dogs living in endemic areas of leishmaniosis advocate the use of antibody response to phlebotomine sand fly saliva as an epidemiological biomarker for monitoring vector exposure. The aim of this study was to analyse the exposure of cats to phlebotomine sand flies using detection of IgG antibodies to Phlebotomus perniciosus saliva. The association between phlebotomine sand fly exposure and the presence of Leishmania infection was also investigated. RESULTS: IgG antibodies to P. perniciosus saliva were detected in 167 (47.7%) out of 350 cats; higher antibody levels were present in sera collected during the period of phlebotomine sand fly seasonal activity (OR = 19.44, 95% CI: 9.84-38.41). Cats of 12-35 months had higher antibody levels than younger ones (OR = 3.56, 95% CI: 1.39-9.16); this difference was also significant with older cats (for 36-95 months-old, OR = 9.43, 95% CI: 3.62-24.48; for older than 95 months, OR = 9.68, 95% CI: 3.92-23.91). Leishmania spp. DNA was detected in the blood of 24 (6.9%) cats, while antibodies to L. infantum were detected in three (0.9%). Only one cat was positive to Leishmania by both techniques. Cats presenting IgG antibodies to P. perniciosus had a significantly higher risk of being positive for Leishmania infection. CONCLUSIONS: To our knowledge, this is the first study demonstrating anti-sand fly saliva antibodies in cats. The evaluation of the contact of this animal species with the vector is important to the development of prophylactic measures directed to cats, with the aim of reducing the prevalence of infection in an endemic area. Therefore, studies evaluating whether the use of imidacloprid/flumethrin collars reduces the frequency of P. perniciosus bites in cats are needed. It is also important to evaluate if there is a correlation between the number of phlebotomine sand fly bites and IgG antibody levels.


Assuntos
Doenças do Gato/parasitologia , Leishmania infantum/imunologia , Leishmaniose Visceral/veterinária , Phlebotomus/imunologia , Saliva/imunologia , Animais , Formação de Anticorpos , Doenças do Gato/imunologia , Gatos , Feminino , Imunoglobulina G/imunologia , Masculino , Fatores de Risco
15.
Int J Parasitol Parasites Wildl ; 8: 118-126, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30740304

RESUMO

Cutaneous leishmaniasis caused by Leishmania major is a typical zoonosis circulating in rodents. In Sub-Saharan Africa the reservoirs remain to be identified, although L. major has been detected in several rodent species including members of the genera Arvicanthis and Mastomys. However, differentiation of true reservoir hosts from incidental hosts requires in-depth studies both in the field and in the laboratory, with the best method for testing the infectiousness of hosts to biting vectors being xenodiagnosis. Here we studied experimental infections of three L. major strains in Arvicanthis neumanni, A. niloticus and Mastomys natalensis; the infections were initiated either with sand fly-derived or with culture-derived Leishmania promastigotes. Inoculated rodents were monitored for several months and tested by xenodiagnoses for their infectiousness to Phlebotomus duboscqi, the natural vector of L. major in Sub-Saharan Africa. The distribution and load of parasites were determined post mortem using qPCR from the blood, skin and viscera samples. The attractiveness of Arvicanthis and Mastomys to P. duboscqi was tested by pair-wise comparisons. Three L. major strains used significantly differed in infectivity: the Middle Eastern strain infected a low proportion of rodents, while two Sub-Saharan isolates (LV109, LV110) infected a high percentage of animals and LV110 also produced higher parasite loads in all host species. All three rodent species maintained parasites of the LV109 strain for 20-25 weeks and were able to infect P. duboscqi without apparent health complications: infected animals showed only temporary swellings or changes of pigmentation at the site of inoculation. However, the higher infection rates, more generalized distribution of parasites and longer infectiousness period to sand flies in M. natalensis suggest that this species plays the more important reservoir role in the life cycle of L. major in Sub-Saharan Africa. Arvicanthis species may serve as potential reservoirs in seasons/periods of low abundance of Mastomys.

16.
PLoS Negl Trop Dis ; 12(12): e0006981, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30513081

RESUMO

BACKGROUND: Phlebotomus orientalis is a vector of Leishmania donovani, the causative agent of life threatening visceral leishmaniasis spread in Eastern Africa. During blood-feeding, sand fly females salivate into the skin of the host. Sand fly saliva contains a large variety of proteins, some of which elicit specific antibody responses in the bitten hosts. To evaluate the exposure to sand fly bites in human populations from disease endemic areas, we tested the antibody reactions of volunteers' sera against recombinant P. orientalis salivary antigens. METHODOLOGY/PRINCIPAL FINDINGS: Recombinant proteins derived from sequence data on P. orientalis secreted salivary proteins, were produced using either bacterial (five proteins) or mammalian (four proteins) expression systems and tested as antigens applicable for detection of anti-P. orientalis IgG in human sera. Using these recombinant proteins, human sera from Sudan and Ethiopia, countries endemic for visceral leishmaniasis, were screened by ELISA and immunoblotting to identify the potential markers of exposure to P. orientalis bites. Two recombinant proteins; mAG5 and mYEL1, were identified as the most promising antigens showing high correlation coefficients as well as good specificity in comparison to the whole sand fly salivary gland homogenate. Combination of both proteins led to a further increase of correlation coefficients as well as both positive and negative predictive values of P. orientalis exposure. CONCLUSIONS/SIGNIFICANCE: This is the first report of screening human sera for anti-P. orientalis antibodies using recombinant salivary proteins. The recombinant salivary proteins mYEL1 and mAG5 proved to be valid antigens for screening human sera from both Sudan and Ethiopia for exposure to P. orientalis bites. The utilization of equal amounts of these two proteins significantly increased the capability to detect anti-P. orientalis antibody responses.


Assuntos
Imunoglobulina G/imunologia , Mordeduras e Picadas de Insetos/imunologia , Proteínas de Insetos/imunologia , Phlebotomus/imunologia , Proteínas e Peptídeos Salivares/imunologia , África Oriental , Animais , Formação de Anticorpos , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Mordeduras e Picadas de Insetos/parasitologia , Proteínas de Insetos/genética , Phlebotomus/genética , Phlebotomus/fisiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Saliva/imunologia , Proteínas e Peptídeos Salivares/genética
17.
Parasit Vectors ; 11(1): 545, 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30309376

RESUMO

BACKGROUND: Canine leishmaniosis (CanL) is an important zoonotic parasitic disease, endemic in the Mediterranean basin. In this region, transmission of Leishmania infantum, the etiological agent of CanL, is through the bite of phlebotomine sand flies. Therefore, monitoring host-vector contact represents an important epidemiological tool, and could be used to assess the effectiveness of vector-control programmes in endemic areas. Previous studies have shown that canine antibodies against the saliva of phlebotomine sand flies are specific markers of exposure to Leishmania vectors. However, this method needs to be further validated in natural heterogeneous dog populations living in CanL endemic areas. METHODS: In this study, 176 dogs living in 12 different locations of an L. infantum endemic area in north-east Spain were followed for 14 months. Blood samples were taken at 5 pre-determined time points (February, August and October 2016; January and April 2017) to assess the canine humoral immune response to whole salivary gland homogenate (SGH) and to the single salivary 43 kDa yellow-related recombinant protein (rSP03B) of Phlebotomus perniciosus, a proven vector of L. infantum naturally present in this region. Simultaneously, in all dogs, L. infantum infection status was assessed by serology. The relationship between anti-SGH and anti-rSP03B antibodies with the sampling month, L. infantum infection and the location was tested by fitting multilevel linear regression models. RESULTS: The dynamics of canine anti-saliva IgG for both SGH and rSP03B followed the expected trends of P. perniciosus activity in the region. Statistically significant associations were detected for both salivary antigens between vector exposure and sampling month or dog seropositivity to L. infantum. The correlation between canine antibodies against SGH and rSP03B was moderate. CONCLUSIONS: Our results confirm the frequent presence of CanL vectors in the study area in Spain and support the applicability of SGH- and rSP03B-based ELISA tests to study canine exposure to P. perniciosus in L. infantum endemic areas.


Assuntos
Anticorpos/sangue , Doenças Endêmicas/veterinária , Leishmania infantum/isolamento & purificação , Leishmaniose/veterinária , Phlebotomus/imunologia , Saliva/imunologia , Proteínas e Peptídeos Salivares/imunologia , Animais , Anticorpos Antiprotozoários/sangue , Doenças do Cão/diagnóstico , Doenças do Cão/imunologia , Doenças do Cão/parasitologia , Cães/imunologia , Cães/parasitologia , Feminino , Imunidade Humoral , Imunoglobulina G/análise , Insetos Vetores/parasitologia , Leishmaniose/sangue , Leishmaniose/parasitologia , Estudos Longitudinais , Saliva/microbiologia , Saliva/parasitologia , Glândulas Salivares/química , Glândulas Salivares/parasitologia , Estações do Ano , Espanha/epidemiologia
18.
Acta Trop ; 183: 64-77, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29621537

RESUMO

Visceral Leishmaniasis (VL) is a disseminated protozoan infection caused by Leishmania donovani that affects almost half a million people annually. In Northern Ethiopia, VL is common in migrant agricultural laborers returning from the lowland sesame fields of Metema and Humera. Recent VL foci have emerged in resident rural populations near the town. In the current study, we evaluate multilevel entomological, epidemiological and ecological factors associated with infection and disease through fine-scale eco-epidemiological analyses in three villages. Satellite images showed that villages constructed in or close to vertisols, were likely to become endemic for VL. Vertisols or black-cotton soil, are characterized by high contents of smectitic clay minerals, which swell when hydrated and shrink upon desiccation, causing extensive deep cracking during the dry season. The population densities of Phlebotomus orientalis, the vector, were negatively correlated with distance from vertisols and persons living close to vertisols were more likely to be bitten by sand flies, as evidenced by sero-positivity to Ph. orientalis saliva. Apparent (albeit non-significant) clustering of VL cases and abundant asymptomatic infections close to vertisols, suggest anthroponotic transmission around houses located close to vertisols. Comparable rates of male and female volunteers, mostly under 15 years of age, were infected with L. donovani but a significantly higher proportion of males succumbed to VL indicating a physiological gender-linked male susceptibility. Our data suggest that the abundant infected persons with high parasitemias who remain asymptomatic, may serve as reservoir hosts for anthroponotic transmission inside villages. Only limited insights on the transmission dynamics of L. donovani were gained by the study of environmental factors such as presence of animals, house structure and vegetation cover.


Assuntos
Leishmaniose Visceral/epidemiologia , Adolescente , Adulto , Agricultura , Animais , Criança , Ecossistema , Estudos Epidemiológicos , Etiópia/epidemiologia , Feminino , Humanos , Leishmania donovani , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/transmissão , Masculino , Doenças Profissionais/epidemiologia , Doenças Profissionais/parasitologia , Densidade Demográfica , Psychodidae , População Rural , Estações do Ano , Distribuição por Sexo , Solo
19.
Am J Trop Med Hyg ; 98(1): 139-141, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29141753

RESUMO

Leishmania spp. are medically important unicellular parasites transmitted by phlebotomine sand flies. The World Health Organization recently highlighted the importance of reliable diagnostic tools for leishmaniasis. Our study of human infection was conducted in two endemic foci of Leishmania tropica in the Galilee region, northern Israel. Elevated anti-Leishmania antibodies were present in the majority (78.6%) of L. tropica-PCR positive individuals. Moreover, the enzyme-linked immunosorbent assay showed high sensitivity, specificity, and negative and positive predictive values (ranging between 73% and 79%), thus fulfilling the basic requirement for future development of a serodiagnostic and screening tool. The anti-sand fly saliva antibodies used as biomarkers of exposure reflected the composition of the local sand fly fauna as well as the abundance of individual species. High levels of antibodies against vector salivary proteins may further indicate frequent exposure to sand flies and consequently a higher probability of Leishmania transmission.


Assuntos
Leishmania tropica , Leishmaniose Cutânea/diagnóstico , Animais , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Israel/epidemiologia , Leishmaniose Cutânea/epidemiologia , Psychodidae/parasitologia , Sensibilidade e Especificidade , Estudos Soroepidemiológicos , Testes Sorológicos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...