Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37765523

RESUMO

The illicit use of fentanyl has led to hundreds of thousands of opioid-related deaths worldwide. Therefore, the detection of fentanyl by law enforcement and recreational users is of utmost importance. However, current detection methods are expensive, time-consuming, require special storage conditions, and necessitate complex instrumentation that is generally unportable and requires skilled personnel to operate. An alternative approach would be using molecularly imprinted polymers (MIPs) as the recognition component of a handheld sensor, testing strip, or color-based assay. In this work, a molecularly imprinted polymer was constructed using the functional monomer methacrylic acid (MAA) and the cross-linking monomer ethyleneglycol dimethacrylate (EGDMA), with benzylfentanyl (Bfen) as the template. The use of benzylfentanyl is advantageous because it closely mimics fentanyl's structure but does not cause any physiological narcotic effects. Important studies herein determined the optimum ratio of the template/functional monomer, with subsequent evaluations of selectivity of the MIP for the template and fentanyl versus the commonly encountered narcotics such as methamphetamine, cocaine, and heroin. The data obtained from the HPLC analysis showed that the Bfen-MIP was successful in selectively binding the template and actual fentanyl, better than other common narcotics.

2.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36613616

RESUMO

The high affinity and/or selectivity of oligonucleotide-mediated binding offers a myriad of therapeutical and analytical applications, whose rational design implies an accurate knowledge of the involved molecular mechanisms, concurring equilibrium processes and key affinity parameters. Oligonucleotide-functionalized gold surfaces or nanostructures are regularly employed analytical platforms for the development of label-free optical or electrochemical biosensors, and recently, novel detection platform designs have been increasingly considering the synergistic effect of polyvalent binding, involving the simultaneous interaction of two or several oligonucleotide strands. Considering the general lack of studies involving ternary single-stranded DNA (ssDNA) interactions, a complementary analytical workflow involving capillary gel electrophoretic (CGE) mobility shift assay, microcalorimetry and computational modeling has been deployed for the characterization of a series of free and surface-bound binary and ternary oligonucleotide interactions. As a proof of concept, the DNA analogue of MicroRNA 21 (miR21), a well-known oncogenic short MicroRNA (miRNA) sequence, has been chosen as a target molecule, simulating limiting-case scenarios involved in dual molecular recognition models exploited in affinity (bio)sensing. Novel data for the characterization of oligonucleotide interacting modules is revealed, offering a fast and complete mapping of the specific or non-specific, often competing, binary and ternary order interactions in dynamic equilibria, occurring between various free and metal surface-bound oligonucleotides.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Oligonucleotídeos/química , DNA , DNA de Cadeia Simples
3.
Molecules ; 23(8)2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30060464

RESUMO

In the last few decades, molecular imprinting technology went through a spectacular evolution becoming a well-established tool for the synthesis of highly selective biomimetic molecular recognition platforms. Nevertheless, there is still room for advancement in the molecular imprinting of highly polar chiral compounds. The aim of the present work was to investigate the favorable kosmotropic effect of a ternary complex involving a polar chiral template (eutomer of atenolol) and a functional monomer, bridged by a central metal ion through well-defined, spatially directional coordinate bonds. The efficiency of the chiral molecular recognition was systematically assessed on polymers obtained both by non-covalent and metal-mediated molecular imprinting. The influence on the chromatographic retention and enantioselectivity of different experimental variables (functional monomers, cross-linkers, chaotropic agents, metal ions, porogenic systems, etc.) were studied on both slurry packed and monolithic HPLC columns. Deliberate changes in the imprinting and rebinding (chromatographic) processes, along with additional thermodynamic studies shed light on the particularities of the molecular recognition mechanism. The best performing polymer in terms of enantioselectivity (α = 1.60) was achieved using 4-vinyl pyridine as functional monomer and secondary ligand for the Co(II)-mediated imprinting of S-atenolol in the presence of EDMA as cross-linker in a porogenic mixture of [BMIM][BF4]:DMF:DMSO = 10:1:5, v/v/v.


Assuntos
Atenolol/química , Impressão Molecular/métodos , Polímeros/síntese química , Estrutura Molecular , Polímeros/química
5.
J Colloid Interface Sci ; 463: 29-36, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26513734

RESUMO

Molecularly imprinted polymers (MIPs) are an important class of selective materials for molecular specific sensors and separations. Molecular imprinting using non-covalent interactions in aqueous conditions still remains a difficult challenge due to interruption of hydrogen-bonding or electrostatic interactions water. Newly developed crosslinking ionic liquids are demonstrated herein to overcome problems of synthesizing aqueous MIPs, adding to previous examples of ionic liquids used as monomers in non-aqueous conditions or used as MIP solvents. Vinylimidazole ionic liquid crosslinkers were synthesized and subsequently explored as matrix supports for fabrication of molecularly imprinted polymeric nanoGUMBOS (nanoparticles derived from a group of uniform materials based on organic salts). Each of the four crosslinkers incorporated a unique functional spacer between the vinylimidazole groups, and the performance of the corresponding molecularly imprinted polymers was evaluated using chiral recognition as the diagnostic. High uptake values for l-tryptophan were found in the 13-87µmol/g range; and chiral recognition was determined via binding ratios of l-tryptophan over d-tryptophan that ranged from 5:1 to 13:1 for polymers made using different crosslinkers. Not only are these materials good for chiral recognition, but the results highlight the utility of these materials for imprinting aqueous templates such as biological targets for theranostic agents.

6.
J Sep Sci ; 39(3): 552-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26582435

RESUMO

In this study, molecularly imprinted polymer fibers for solid-phase microextraction have been prepared with a single bifunctional monomer, N,O-bismethacryloyl ethanolamine using the so-called "one monomer molecularly imprinted polymers" method, replacing the conventional combination of functional monomer and cross-linker to form high fidelity binding sites. For comparison, imprinted fibers were prepared following the conventional approach based on ethylene glycol dimethacrylate as cross-linker and methacrylic acid as monomer. The recognition performance of the new fibers was evaluated in the solid-phase microextraction of parabens, and from this study it was concluded that they provided superior performance over conventionally formulated fibers. Ultimately, real-world environmental testing on spiked solid samples was successful by the molecularly imprinted solid-phase microextraction of samples, and the relative recoveries obtained at enrichment levels of 10 ng/g of parabens were within 78-109% for soil and 83-109% for sediments with a relative standard deviation <15% (n = 3).

7.
Anal Chim Acta ; 890: 157-64, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26347178

RESUMO

The development of molecularly imprinted chiral stationary phases has traditionally been limited by the need for a chiral pure template. Paradoxically, availability of a chiral pure template largely defeats the purpose of developing a chiral stationary phase. To solve this paradox, imprinting of scalemic and racemic template mixtures was investigated using both chiral (N-α-bismethacryloyl-L-alanine) and achiral (N,O-bisacrylamide ethanolamine) crosslinkers. Imprinting of scalemic mixtures provided polymers capable of partial separation of Boc-tyrosine enantiomers with virtually the same results when using either the chiral or achiral crosslinker. However, the chiral crosslinker was required for chiral differentiation by the racemic imprinted polymers which were evaluated in both batch rebinding and chromatographic modes. Batch rebinding analysis revealed intersecting binding isotherms for the L- and D-Boc-tyrosine, indicating bias for the D or L enantiomer is concentration dependent. Partial chromatographic separation was achieved by the racemic imprinted polymers providing variable D or L bias in equal probability over multiple replicates of polymer synthesis. Correlation of enantiomer bias with the batch rebinding results and optimization of HPLC parameters are discussed.

8.
J Hazard Mater ; 274: 1-7, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24759433

RESUMO

Im*plications due to oil spills on marine ecosystems have created a great interest toward developing more efficient and selective materials for oil spill toxins detection and remediation. This research paper highlights the application of highly efficient molecularly imprinted polymer (MIP) adsorbents based on a newly developed functional crosslinker (N,O-bismethacryloyl ethanolamine, NOBE) for detection of highly toxic polycyclic aromatic hydrocarbons (PAHs) in seawater. The binding capacity of MIP for oil spill toxin pyrene is 35 mg/g as compared to the value of 3.65 mg/g obtained using a non-imprinted polymer (NIP). The selectivity of all three high molecular weight PAHs (pyrene, chrysene and benzo[a]pyrene) on the NOBE-MIP shows an excellent selective binding with only 5.5% and 7% cross-reactivity for chrysene and benzo[a]pyrene, respectively. Not only is this particularly significant because the rebinding solvent is water, which is known to promote non-selective hydrophobic interactions; the binding remains comparable under salt-water conditions. These selective and high capacity adsorbents will find wide application in industrial and marine water monitoring/remediation.


Assuntos
Impressão Molecular , Hidrocarbonetos Policíclicos Aromáticos/análise , Polímeros/química , Poluentes Químicos da Água/análise , Adsorção , Reagentes de Ligações Cruzadas/química , Ecossistema , Monitoramento Ambiental , Etanolaminas/química , Metacrilatos/química , Poluição por Petróleo , Hidrocarbonetos Policíclicos Aromáticos/química , Água do Mar/análise , Poluentes Químicos da Água/química
9.
Org Lett ; 16(5): 1402-5, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24564529

RESUMO

A new method for determination of absolute configuration (AC) is demonstrated using an enantiomeric pair of molecularly imprinted polymers, referred to as "DuoMIPs". The ratio of HPLC capacity factors (k') for the analyte on each of the DuoMIPs is defined as the γ factor and can be used to determine AC when above 1.2. A mnemonic based on the complementary binding geometry of the DuoMIPs was used to aid in understanding and prediction of AC.

10.
Angew Chem Int Ed Engl ; 53(8): 2095-8, 2014 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-24453117

RESUMO

The detection of viruses is of interest for a number of fields including biomedicine, environmental science, and biosecurity. Of particular interest are methods that do not require expensive equipment or trained personnel, especially if the results can be read by the naked eye. A new "double imprinting" method was developed whereby a virus-bioimprinted hydrogel is further micromolded into a diffraction grating sensor by using imprint-lithography techniques to give a "Molecularly Imprinted Polymer Gel Laser Diffraction Sensor" (MIP-GLaDiS). A simple laser transmission apparatus was used to measure diffraction, and the system can read by the naked eye to detect the Apple Stem Pitting Virus (ASPV) at concentrations as low as 10 ng mL(-1), thus setting the limit of detection of these hydrogels as low as other antigen-binding methods such as ELISA or fluorescence-tag systems.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Vírus de Plantas/isolamento & purificação , Lasers , Microscopia , Impressão Molecular
11.
J Mol Recognit ; 26(9): 402-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23836467

RESUMO

A localized surface plasmon resonance (LSPR) sensor surface was fabricated by the deposition of gold nanorods on a glass substrate and subsequent immobilization of the DNA aptamer, which specifically bind to thrombin. This LSPR aptamer sensor showed a response of 6-nm λ(max) shift for protein binding with the detection limit of at least 10 pM, indicating one of the highest sensitivities achieved for thrombin detection by optical extinction LSPR. We also tested the LSPR sensor fabricated using gold bipyramid, which showed higher refractive index sensitivity than the gold nanorods, but the overall response of gold bipyramid sensor appears to be 25% less than that of the gold nanorod substrate, despite the approximately twofold higher refractive index sensitivity. XPS analysis showed that this is due to the low surface density of aptamers on the gold bipyramid compared with gold nanorods. The low surface density of the aptamers on the gold bipyramid surface may be due to the effect of shape of the nanostructure on the kinetics of aptamer monolayer formation. The small size of aptamers relative to other bioreceptors is the key to achieving high sensitivity by biosensors on the basis of LSPR, demonstrated here for protein binding. The generality of aptamer sensors for protein detection using gold nanorod and gold nanobipyramid substrates is anticipated to have a large impact in the important development of sensors toward biomarkers, environmental toxins, and warfare agents.


Assuntos
Aptâmeros de Nucleotídeos/química , Ouro/química , Nanotubos/química , Ressonância de Plasmônio de Superfície/métodos , Vidro/química , Espectroscopia Fotoeletrônica , Ligação Proteica , Propriedades de Superfície , Trombina/química
12.
J Am Chem Soc ; 135(18): 6977-84, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23596978

RESUMO

It is becoming more important to detect ultralow concentrations of analytes for biomedical, environmental, and national security applications. Equally important is that new methods should be easy to use, inexpensive, portable, and if possible allow detection by the naked eye. By and large, detection of low concentrations of analytes cannot be achieved directly but requires signal amplification by catalysts, macromolecules, metal surfaces, or supramolecular aggregates. The rapidly progressing field of macromolecular signal amplification has been advanced using conjugated polymers, chirality in polymers, solvating polymers, and polymerization/depolymerization strategies. A new type of aptamer-based hydrogel with specific response to target proteins presented in this report demonstrates an additional category of macromolecular signal amplification. This superaptamer assembly provides the first example of using protein-specific aptamers to create volume-changing hydrogels with amplified response to the target protein. A remarkable aspect of these superaptamer hydrogels is that volume shrinking is visible to the naked eye down to femtomolar concentrations of protein. This extraordinary macromolecular amplification is attributed to a complex interplay between protein-aptamer supramolecular cross-links and the consequential reduction of excluded volume in the hydrogel. Specific recognition is even maintained in biological matrices such as urine and tears. Furthermore, the gels can be dried for long-term storage and regenerated for use without loss of activity. In practice, the ease of this biomarker detection method offers an alternative to traditional analytical techniques that require sophisticated instrumentation and highly trained personnel.


Assuntos
Hidrogéis/química , Trombina/química , Sítios de Ligação , Substâncias Macromoleculares/química , Modelos Moleculares , Estrutura Molecular , Trombina/metabolismo
13.
Methods Mol Biol ; 970: 209-20, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23283779

RESUMO

Molecularly imprinted polymers (MIPs) are becoming increasingly useful as chromatographic adsorbents for molecular separations, especially chiral separations, because they can be tailored to specifically recognize the target molecule including its stereochemistry. Traditionally formed MIPs (as described here) are stable under ambient conditions for years, take only days to make, and use relatively inexpensive components, with the possible exception of the template in some cases which can be reused after it is removed from the polymer to keep costs down. In addition to providing experimental details for typical synthetic methods to fabricate MIPs and pack them into HPLC columns, this chapter also gives an overview of the concepts of molecular imprinting method and discusses important factors for designing an effective imprinted polymer.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Impressão Molecular/métodos , Polímeros/análise , Polímeros/química , Estereoisomerismo
14.
J Mol Recognit ; 24(6): 915-29, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22038798

RESUMO

A comprehensive report on molecularly imprinted monolayers (MIMs) is presented, but does not include bulk-polymer thin film coatings on surfaces, inorganic surface imprinting, polymer grafting and layer-by-layer methods. Due to difficulties in imprinting large molecules and obtaining fast binding responses with traditional network polymer materials, MIMs have been developed with the aim of enhancing mass-transfer of analytes in imprinted materials. Three approaches to MIM fabrication have been developed with respect to the formation of the pre-organized template-matrix complex. In the first approach, the molecular binding sites are formed in a monolayer on a glass or gold surface. The second approach uses a template-macromolecule complex to form binding sites in the solution phase that are immobilized onto a surface; and the third approach transfers an imprinted Langmuir film onto a gold surface. Mass transfer in these MIMs in most cases is on the order of minutes, and both small and large molecules (proteins) have been imprinted.


Assuntos
Ouro/química , Impressão Molecular/métodos , Polímeros/síntese química , Proteínas/química , Estrutura Molecular , Polímeros/química , Ligação Proteica , Compostos de Amônio Quaternário/química , Propriedades de Superfície
15.
Langmuir ; 27(12): 7949-57, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21608975

RESUMO

Droplet microfluidics performed in poly(methyl methacrylate) (PMMA) microfluidic devices resulted in significant wall wetting by water droplets formed in a liquid-liquid segmented flow when using a hydrophobic carrier fluid such as perfluorotripropylamine (FC-3283). This wall wetting led to water droplets with nonuniform sizes that were often trapped on the wall surfaces, leading to unstable and poorly controlled liquid-liquid segmented flow. To circumvent this problem, we developed a two-step procedure to hydrophobically modify the surfaces of PMMA and other thermoplastic materials commonly used to make microfluidic devices. The surface-modification route involved the introduction of hydroxyl groups by oxygen plasma treatment of the polymer surface followed by a solution-phase reaction with heptadecafluoro-1,1,2,2-tetrahydrodecyl trichlorosilane dissolved in fluorocarbon solvent FC-3283. This procedure was found to be useful for the modification of PMMA and other thermoplastic surfaces, including polycyclic olefin copolymer (COC) and polycarbonate (PC). Angle-resolved X-ray photoelectron spectroscopy indicated that the fluorination of these polymers took place with high surface selectivity. This procedure was used to modify the surface of a PMMA droplet microfluidic device (DMFD) and was shown to be useful in reducing the wetting problem during the generation of aqueous droplets in a perfluorotripropylamine (FC-3283) carrier fluid and could generate stable segmented flows for hours of operation. In the case of PMMA DMFD, oxygen plasma treatment was carried out after the PMMA cover plate was thermally fusion bonded to the PMMA microfluidic chip. Because the appended chemistry to the channel wall created a hydrophobic surface, it will accommodate the use of other carrier fluids that are hydrophobic as well, such as hexadecane or mineral oils.


Assuntos
Microfluídica/instrumentação , Polímeros/química , Microscopia de Força Atômica , Análise Espectral/métodos , Propriedades de Superfície , Água/química , Raios X
16.
Analyst ; 134(4): 719-24, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19305921

RESUMO

A single bi-functional monomer, N,O-bismethacryloyl ethanolamine (NOBE), was used in precipitation polymerization system to synthesize molecularly imprinted polymer (MIP) microspheres. Highly specific binding sites were obtained for N-terminal protected neuropeptides, Boc-Leu-enkephalin and Pyr-Leu-enkephalin. The use of NOBE allowed binding sites to be formed in polymer microspheres that are able to recognize target peptides through the consensus C-terminal sequence. The interesting molecular binding results suggest a new approach for peptide analysis combining in situ chemical modification with MIP recognition under non-aqueous conditions.


Assuntos
Materiais Biomiméticos , Impressão Molecular , Peptídeos/análise , Animais , Precipitação Química , Microesferas , Peptídeos/química , Porosidade , Propriedades de Superfície
17.
Biosens Bioelectron ; 25(3): 604-8, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19321332

RESUMO

Changes detected in the imprinting effect by OMNiMIPs imprinted with multiple templates appear to be a function of the maximum template loading. Below the maximum template loading, the polymers imprinted with multiple compounds provide molecular recognition close to the polymers imprinted with single compounds, for each template compound tested. However, template loading past this point can result in significant lowering of the imprinting effect. For example, 1,1'-bi-2-naphthol enantiomers showed nearly a 60% loss in enantioselectivity on OMNiMIP 8 (imprinted with four templates); yet still maintained a separation factor of 3.7 allowing baseline separation of enantiomers. Similar behavior was seen for the other three template molecules, although losses in enantioselectivity were less severe. The multi-analyte imprinted OMNiMIP 8 was shown to be capable of separating a template molecule individually from a mixture, including enantiomers, but not all four concurrently. With respect to physical properties of the different OMNiMIPs, gradual trends in porosity and surface area correlated to the concentration of the templates, independent of their molecular structure.


Assuntos
Impressão Molecular/métodos , Sítios de Ligação , Estrutura Molecular , Naftóis/análise , Naftóis/química , Polímeros/química , Serina/análogos & derivados , Serina/análise , Serina/química , Estereoisomerismo , Propriedades de Superfície , Triptofano/análogos & derivados , Triptofano/análise , Triptofano/química , Tirosina/análogos & derivados , Tirosina/análise , Tirosina/química
18.
J Mol Recognit ; 22(2): 121-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19195014

RESUMO

One monomer molecularly imprinted polymers (OMNiMIPs) have enhanced binding and selectivity properties versus traditionally formulated ethylene glycol dimethacrylate (EGDMA)/methacrylic acid (MAA) imprinted polymers. Further comparison was investigated toward multi-analyte imprinting capability of these two imprinted materials. Two templates, (R)-(+)-1,1'-bi-2-naphthol and BOC-L-tyrosine were simultaneously imprinted in the polymers, and the enantioselectivity compared to polymers imprinted with one template at a time. The simultaneously imprinted OMNiMIP exhibited only 6.3 and 21.1% loss in enantioselectivity for (R)-(+)-1,1'-bi-2-naphthol and BOC-L-tyrosine respectively, versus the singly imprinted OMNiMIPs. For the EGDMA/MAA imprinted polymer, enantioselectivity was only found for (R)-(+)-1,1'-bi-2-naphthol, with 59.1% loss in enantioselectivity found for the multiple-template imprinted polymer versus the (R)-(+)-1,1'-bi-2-naphthol singly imprinted polymer. It was also shown that imprinting two templates simultaneously leads to better enantioselective performance than mixing the particles of singly imprinted polymers. For example, the enantioselectivity of the R enantiomer of 1,1'-bi-2-binapthol on the simultaneously imprinted OMNiMIP gave a separation factor (alpha) value of 4.4, while the mixed-particle column gave an alpha value of 2.6. In addition, it was found that mixing an imprinted polymer with a non-imprinted polymer resulted in complete loss of chromatographic enantioselectivity in all cases (except the one that still showed severe loss of selectivity). Collectively, the results illustrate that imprinting mixtures of templates simultaneously is the method of choice, especially for OMNiMIPs, for producing multi-analyte molecular recognition in imprinted polymers.


Assuntos
Metacrilatos/química , Naftóis/química , Polímeros/química , Tirosina/química , Reagentes de Ligações Cruzadas , Impressão Molecular , Tirosina/análogos & derivados
19.
Anal Chem ; 80(24): 9630-4, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18989937

RESUMO

A systematic study is reported on the effect of linker size and its chemical composition toward ligand binding to a surface-immobilized aptamer, measured using surface plasmon resonance. The results, using thrombin as the model system, showed that as the number of thymidine (T) units in the linker increases from 0 to 20 in four separate increments (T(0), T(5), T(10), T(20)), the surface density of the aptamer decreased linearly from approximately 25 to 12 pmol x cm(-2). The decrease in aptamer surface density occurred due to the increased size of the linker molecules. In addition, thrombin binding capacity was shown to increase as the linker length increased from 0 to 5 thymidine nucleotides and then decreased as the number of thymidine residues increased to 20 due to a balance between two different effects. The initial increase was due to increased access of thrombin to the aptamer as the aptamer was moved away from the surface. For linkers greater in length than T(5), the overall decrease in binding capacity was primarily due to a decrease in the surface density. Incorporation of a hexa(ethylene glycol) moiety into the linker did not affect the surface density but increased the amount of thrombin bound. In addition, the attachment of the linker at the 3'- versus the 5'-end of the aptamer resulted in increased aptamer surface density. However, monolayers formed with equal surface densities showed similar amounts of thrombin binding irrespective of the point of attachment.


Assuntos
Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Etilenoglicol/química , Etilenoglicol/metabolismo , Trombina/metabolismo , Técnicas Biossensoriais , Ouro/química , Ligação Proteica , Ressonância de Plasmônio de Superfície , Propriedades de Superfície , Trombina/química
20.
Anal Bioanal Chem ; 390(4): 1009-21, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17891385

RESUMO

In this review we examine various methods for the immobilization of aptamers onto different substrates that can be utilized in a diverse array of analytical formats. In most cases, covalent linking to surfaces is preferred over physisorption, which is reflected in the bulk of the reports covered within this review. Conjugation of aptamers with appropriate linkers directly to gold films or particles is discussed first, followed by methods for conjugating aptamers to functionally modified surfaces. In many aptamer-based applications, silicates and silicon oxide surfaces provide an advantage over metallic substrates, and generally require surface modification prior to covalent attachment of the aptamers. Chemical protocols for covalent attachment of aptamers to functionalized surfaces are summarized in the review, showing common pathways employed for aptamer immobilization on different surfaces. Biocoatings, such as avidin or one of its derivatives, have been shown to be highly successful for immobilizing biotin-tethered aptamers on various surfaces (e.g., gold, silicates, polymers). There are also a few examples reported of aptamer immobilization on other novel substrates, such as quantum dots, carbon nanotubes, and carbohydrates. This review covers the literature on aptamer immobilization up to March 2007, including comparison of different linkers of varying size and chemical structure, 3' versus 5' attachment, and regeneration methods of aptamers on surfaces.


Assuntos
Aptâmeros de Nucleotídeos , Aptâmeros de Nucleotídeos/química , Sequência de Bases , Ouro/química , Pontos Quânticos , Análise Espectral , Compostos de Sulfidrila/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...