Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 660: 124356, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38897487

RESUMO

In this work, filament-based 3D-printing, the most widely used sub-category of material extrusion additive manufacturing (MEAM), is presented as a promising manufacturing platform for the production of subcutaneous implants. Print nozzle diameters as small as 100 µm were utilized demonstrating MEAM of advanced porous internal structures at the given cylindrical implant geometry of 2 mm × 40 mm. The bottlenecks related to high-resolution MEAM of subcutaneous implants are systematically analyzed and the print process is optimized accordingly. Custom synthesized biodegradable phase-separated poly(ether ester) multiblock copolymers exhibiting appropriate melt viscosity at comparatively low printing temperatures of 135 °C and 165 °C were utilized as 3D-printing feedstock. The print process was optimized to minimize thermomechanical polymer degradation by employing print speeds of 30 mm∙s-1 in combination with a nozzle diameter of 150 µm at layer heights of 110 µm. These results portray the basis for further development of subcutaneous implantable drug delivery systems where drug release profiles can be tailored through the adaption of the internal implant structure, which cannot be achieved using existing manufacturing techniques.


Assuntos
Implantes de Medicamento , Impressão Tridimensional , Implantes de Medicamento/química , Tecnologia Farmacêutica/métodos , Liberação Controlada de Fármacos , Viscosidade , Porosidade , Sistemas de Liberação de Medicamentos , Polímeros/química
2.
J Pharm Biomed Anal ; 247: 116258, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38830272

RESUMO

Film-coated modified-release tablets are an important dosage form amenable to targeted, controlled, or delayed drug release in the specific region of the gastrointestinal (GI) tract. Depending on the film composition and interaction with the GI fluid, such coated products can modulate the local bioavailability, systemic absorption, protection as an enteric barrier, etc. Although the interaction of a dosage form with the surrounding dissolution medium is vital for the resulting release behavior, the underlying physicochemical phenomena at the film and core levels occurring during the drug release process have not yet been well described. In this work, we attempted to tackle this limitation by introducing a novel in vitro test based on optical coherence tomography (OCT) that allows an in-situ investigation of the sub-surface processes occurring during the drug release. Using a commercially available tablet based on osmotic-controlled release oral delivery systems (OROS), we demonstrated the performance of the presented prototype in terms of monitoring the membrane thickness and thickness variability, the surface roughness, the core swelling behavior, and the porosity of the core matrix throughout the in vitro drug release process from OROS. The superior spatial (micron scale) and temporal (less than 10 ms between the subsequent tomograms) resolution achieved in the proposed setup provides an improved understanding of the dynamics inside the microstructure at any given time during the dissolution procedure with the previously unattainable resolution, offering new opportunities for the design and testing of patient-centric dosage forms.


Assuntos
Preparações de Ação Retardada , Liberação Controlada de Fármacos , Comprimidos , Tomografia de Coerência Óptica , Tomografia de Coerência Óptica/métodos , Preparações de Ação Retardada/química , Sistemas de Liberação de Medicamentos/métodos , Solubilidade , Administração Oral , Porosidade , Comprimidos com Revestimento Entérico/química
3.
Int J Pharm ; 650: 123690, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38081563

RESUMO

Hot melt extrusion (HME) is a common unit operation. It is broadly applicable in the pharmaceutical industry and can be implemented in a continuous manufacturing line. However, the conventional way of active pharmaceutical ingredient (API) feeding with a pre-blend consisting of a powdered API and a polymer does not allow the flexibility and agility to adjust the process parameters, which is generally an essential part of continuous manufacturing. In addition, this method of API feeding may result in the segregation of the individual powder components or agglomeration of highly cohesive materials, leading to an inhomogeneous API content in the extrudates, especially at low doses. In this study, the universal applicability of liquid side feeding in pharmaceutical HME was demonstrated using various APIs suspended or dissolved in water and fed as suspension or undersaturated, supersaturated, and highly concentrated solutions into anterior parts of the extruder. The extrudates were characterized in terms of their API content, residual moisture content, and solid-state of the API embedded in the polymer. The results show that a uniform API content without major deviations can be obtained via this method. Furthermore, the residual moisture content of the extrudates was low enough to have no significant influence on further processing of the final dosage form. In summary, this advanced way of feeding allows an accurate, flexible, and agile feeding of APIs, facilitating the production of personalized final dosage forms and a novel option to link the manufacturing of the drug substance and the drug product.


Assuntos
Tecnologia de Extrusão por Fusão a Quente , Polímeros , Composição de Medicamentos/métodos , Água , Preparações Farmacêuticas , Tecnologia Farmacêutica/métodos , Temperatura Alta
4.
Int J Pharm ; 643: 123279, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37524255

RESUMO

Lipid excipients are favorable materials in pharmaceutical formulations owing to their natural, biodegradable, low-toxic and solubility/permeability enhancing properties. The application of these materials with advanced manufacturing platforms, particularly filament-based 3D-printing, is attractive for personalized manufacturing of thermolabile drugs. However, the filament's weak mechanical properties limit their full potential. In this study, highly flexible filaments were extruded using PG6-C16P, a lipid-based excipient belonging to the group of polyglycerol esters of fatty acids (PGFAs), based on tuning the ratio between its major and minor composition fractions. Increasing the percentage of the minor fractions in the system was found to enhance the relevant mechanical filament properties by 50-fold, guaranteeing a flawless 3D-printability. Applying a novel liquid feeding approach further improved the mechanical filament properties at lower percentage of minor fractions, whilst circumventing the issues associated with the standard extrusion approach such as low throughput. Upon drug incorporation, the filaments retained high mechanical properties with a controlled drug release pattern. This work demonstrates PG6-C16 P as an advanced lipid-based material and a competitive printing excipient that can empower filament-based 3D-printing.


Assuntos
Excipientes , Ácidos Graxos , Composição de Medicamentos , Liberação Controlada de Fármacos , Impressão Tridimensional , Tecnologia Farmacêutica , Comprimidos
5.
Int J Pharm ; 642: 123097, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37268028

RESUMO

Continuous manufacturing of oral solids is a complex process in which critical material attributes (CMAs), formulation and critical process parameters (CPPs) play a fundamental role. However, assessing their effect on the intermediate and final product's critical quality attributes (CQAs) remains challenging. The aim of this study was to tackle this shortcoming by evaluating the influence of raw material properties and formulation composition on the processability and quality of granules and tablets on a continuous manufacturing line. Powder-to-tablet manufacturing was performed using four formulations in various process settings. Pre-blends of different drug loadings (2.5 % w/w and 25% w/w) and two BCS classes (Class I and II) were continuously processed on an integrated process line ConsiGmaTM 25, including twin screw wet granulation, fluid bed drying, milling, sieving, in-line lubrication and tableting. The liquid-to-solid ratio and the granule drying time were varied to process granules under nominal, dry and wet conditions. It was shown that the BCS class and the drug dosage influenced the processability. Intermediate quality attributes, such as the loss on drying and the particle size distribution, directly correlated with the raw material's properties and process parameters. Process settings had a profound impact on the tablet's hardness, disintegration time, wettability and porosity.


Assuntos
Excipientes , Tecnologia Farmacêutica , Composição de Medicamentos , Tamanho da Partícula , Molhabilidade , Comprimidos
6.
AAPS PharmSciTech ; 24(4): 91, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977945

RESUMO

Tribo-charging is often a root cause of mass flow deviations and powder adhesion during continuous feeding. Thus, it may critically impact product quality. In this study, we characterized the volumetric (split- and pre-blend) feeding behavior and process-induced charge of two direct compression grades of polyols, galenIQ™ 721 (G721) for isomalt and PEARLITOL® 200SD (P200SD) for mannitol, under different processing conditions. The feeding mass flow range and variability, hopper end fill level, and powder adhesion were profiled. The feeding-induced tribo-charging was measured using a Faraday cup. Both materials were comprehensively characterized for relevant powder properties, and their tribo-charging was investigated for its dependence on particle size and relative humidity. During split-feeding experiments, G721 showed a comparable feeding performance to P200SD with lower tribo-charging and adhesion to the screw outlet of the feeder. Depending on the processing condition, the charge density of G721 ranged from -0.01 up to -0.39 nC/g, and for P200SD from -3.19 up to -5.99 nC/g. Rather than differences in the particle size distribution of the two materials, their distinct surface and structural characteristics were found as the main factors affecting their tribo-charging. The good feeding performance of both polyol grades was also maintained during pre-blend feeding, where reduced tribo-charging and adhesion propensity was observed for P200SD (decreasing from -5.27 to -0.17 nC/g under the same feeding settings). Here, it is proposed that the mitigation of tribo-charging occurs due to a particle size-driven mechanism.


Assuntos
Manitol , Tecnologia Farmacêutica , Pós/química , Tamanho da Partícula
7.
Eur J Pharm Biopharm ; 184: 92-102, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36707008

RESUMO

Active pharmaceutical ingredients (APIs) often reveal shapes challenging to process, e.g. acicular structures, and exhibit reduced bioavailability induced by slow dissolution rate. Leveraging the API particles' surface and bulk properties offers an attractive pathway to circumvent these challenges. Inkjet printing is an attractive processing technique able to tackle these limitations already in initial stages when little material is available, while particle properties are maintained over the entire production scale. Additionally, it is applicable to a wide range of formulations and offers the possibility of co-processing with a variety of excipients to improve the API's bioavailability. This study addresses the optimization of particle shapes for processability enhancement and demonstrates the successful application of inkjet printing to engineer spherical lacosamide particles, which are usually highly acicular. By optimizing the ink formulation, adapting the substrate-liquid interface and tailoring the heat transfer to the particle, spherical particles in the vicinity of 100 µm, with improved flow properties compared to the bulk material, were produced. Furthermore, the particle size was tailored reproducibly by adjusting the deposited ink volume per cycle and the number of printing cycles. Therefore, the present study shows a novel, reliable, scalable and economical strategy to overcome challenging particle morphologies by co-processing an API with suitable excipients.


Assuntos
Excipientes , Agulhas , Excipientes/química , Impressão/métodos , Tamanho da Partícula , Impressão Tridimensional
9.
Pharm Res ; 40(1): 281-294, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36380170

RESUMO

PURPOSE: New drug development and delivery approaches result in an ever-increasing demand for tailored microparticles with defined sizes and structures. Inkjet printing technologies could be promising new processes to engineer particles with defined characteristics, as they are created to precisely deliver liquid droplets with high uniformity. METHODS: D-mannitol was used as a model compound alone or co-processed with the pore former agent ammonium bicarbonate, and the polymer polyethylene glycol 200. Firstly, a drop shape analyzer was used to characterize and understand ink/substrate interactions, evaporation, and solidification kinetics. Consequently, the process was transferred to a laboratory-scale inkjet printer and the resulting particles collected, characterized and compared to others obtained via an industrial standard technique. RESULTS: The droplet shape analysis allowed to understand how 3D structures are formed and helped define the formulation and process parameters for inkjet printing. By adjusting the drop number and process waveform, spherical particles with a mean size of approximately 100 µm were obtained. The addition of pore former and polymer allowed to tailor the crystallization kinetics, resulting in particles with a different surface (i.e., spike-like surface) and bulk (e.g. porous and non-porous) structure. CONCLUSION: The workflow described enabled the production of 3D structures via inkjet printing, demonstrating that this technique can be a promising approach to engineer microparticles.


Assuntos
Polímeros , Fluxo de Trabalho
10.
Pharmaceutics ; 14(12)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36559111

RESUMO

The aim of this study was to develop a continuous pilot-scale solidification and characterization of self-emulsifying drug delivery systems (SEDDSs) via hot melt extrusion (HME) using Soluplus® and Kollidon® VA-64. First, an oil-binding capacity study was performed to estimate the maximal amount of SEDDSs that the polymers could bind. Then, HME was conducted using a Coperion 18 mm ZSK18 pilot plant-scale extruder with split-feeding of polymer and SEDDS in 10, 20, and 30% w/w SEDDSs was conducted. The prepared extrudates were characterized depending on appearance, differential scanning calorimetry, wide-angle X-ray scattering, emulsification time, droplet size, polydispersity index, and cloud point. The oil-binding studies showed that the polymers were able to bind up to 50% w/w of liquid SEDDSs. The polymers were processed via HME in a temperature range between 110 and 160 °C, where a plasticizing effect of the SEDDSs was observed. The extrudates were found to be stable in the amorphous state and self-emulsified in demineralized water at 37 °C with mean droplet sizes between 50 and 300 nm. A cloud point and phase inversion were evident in the Soluplus® samples. In conclusion, processing SEDDSs with HME could be considered a promising alternative to the established solidification techniques as well as classic amorphous solid dispersions for drug delivery.

11.
AAPS PharmSciTech ; 23(7): 264, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163535

RESUMO

Microparticulate drug delivery systems, e.g., micropellets (MPs), are used in a variety of pharmaceutical formulations such as suspensions, injectable systems, and capsules. MPs are currently manufactured mainly via batch, solvent-based processes, e.g., spray-drying and solvent evaporation-extraction. In this paper, we present a novel, solvent-free, continuous hot-melt extrusion-based approach with an inline cold pelletization step and the potential of unprecedented on-the-fly formulation changes, aiming at producing the smallest particles usable for injectable applications. A biodegradable, crystalline dispersion consisting of poly(DL-lactic acid) (PLA) filled with metformin as the model drug was chosen on purpose to elucidate the broad applicability of the process also to formulations with limited stretchability and complex pelletizability. Next to optical/statistical particle analyses and in-line high-speed camera investigations providing insights into the pelletization process, the injectability of the most promising micropellets was compared to that of one marketed formulation. Fast extrudate haul-off speeds and high numbers of pelletizer knives resulted in particles with a narrow and small particle size distribution with a d50 below 270 µm and aspect ratios close to 1. To omit protruding drug particles to ensure sufficient extrudate stretchability and allow for the smallest MPs, it was found that the d90 of the embedded drug must be significantly below the extrudate diameter. Upon adapting the syringe diameter, the produced micropellets revealed similar injectability parameters to the marketed formulation, showcasing the potential that the proposed setup has for the manufacturing of novel microparticulate formulations.


Assuntos
Ácido Láctico , Metformina , Composição de Medicamentos/métodos , Temperatura Alta , Poliésteres , Solubilidade , Suspensões
12.
Expert Opin Drug Deliv ; 19(9): 1013-1032, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35943158

RESUMO

INTRODUCTION: Self-emulsifying drug delivery systems (SEDDS) are a promising strategy to improve the oral bioavailability of poorly water-soluble drugs (PWSD). However, poor drug loading capacity and formulation instability are the main setbacks of traditional SEDDS. The use of polymeric precipitation inhibitors was shown to create supersaturable SEDDS with increased drug loads, and their solidification can help to overcome the instability challenge. As an alternative to several existing SEDDS solidification technologies, hot melt extrusion (HME) has the potential for lean and continuous manufacturing of supersaturable solid-SEDDS. Despite being ubiquitously applied in solid lipid and polymeric processing, HME has not yet been widely considered for the preparation of SEDDS. AREAS COVERED: The review begins why SEDDS as the preferred lipid-based delivery systems (LBDS) is suitable for the oral delivery of PWSD and discusses the common barriers to oral administration. The potential of LBDS to surmount them is discussed. SEDDS as the flagship of LBDS for PWSD is proposed with a special emphasis on solid-SEDDS. Finally, the opportunities and challenges of HME from the lipid-based excipient (LBE) processing and product performance standpoint are highlighted. EXPERT OPINION: HME is a continuous, solvent-free, cost-effective, and scalable technology for manufacturing solid supersaturable SEDDS. Several critical formulations and process parameters for successfully preparing SEDDS via HME are identified.


Assuntos
Excipientes , Tecnologia de Extrusão por Fusão a Quente , Sistemas de Liberação de Medicamentos , Emulsões , Lipídeos , Preparações Farmacêuticas , Polímeros , Solubilidade , Água
13.
Int J Pharm ; 624: 122013, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35839981

RESUMO

In order to expand the limited portfolio of available polymer-based excipients for fabricating three-dimensional (3D) printed pharmaceutical products, Lipid-based excipients (LBEs) have yet to be thoroughly investigated. The technical obstacle of LBEs application is, however their crystalline nature that renders them very brittle and challenging for processing via 3D-printing. In this work, we evaluated the functionality of LBEs for filament-based 3D-printing of oral dosage forms. Polyglycerol partial ester of palmitic acid and polyethylene glycols monostearate were selected as LBEs, based on their chemical structure, possessing polar groups for providing hydrogen-bonding sites. A fundamental understanding of structure-function relationship was built to screen the critical material attributes relevant for both extrusion and 3D-printing processes. The thermal behavior of lipids, including the degree of their supercooling, was the critical attribute for their processing. The extrudability of materials was improved through different feeding approaches, including the common powder feeding and a devised liquid feeding setup. Liquid feeding was found to be more efficient, allowing the production of filaments with high flexibility and improved printability. Filaments with superior performance were produced using polyglycerol ester of palmitic acid. In-house designed modifications of the utilized 3D-printer were essential for a flawless processing of the filaments.


Assuntos
Excipientes , Ácido Palmítico , Formas de Dosagem , Liberação Controlada de Fármacos , Ésteres , Excipientes/química , Pós , Impressão Tridimensional , Comprimidos/química , Tecnologia Farmacêutica/métodos
14.
Int J Pharm ; 623: 121909, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35697202

RESUMO

This study addressed the need for a flexible (personalizable) production of biologics, allowing their stabilization in the solid state and processing of small batch volumes. Therefore, inkjet printing into vials followed by a gentle vacuum drying step at ambient temperature was investigated by screening different formulations with a 22-full factorial design of experiments regarding printability. Human Serum Albumin (HSA) was used as a model protein in a wide range of concentrations (5 to 50 mg/ml), with (10 w/v%) and without the surfactant polysorbate 80 (PS80). PS80 was identified to positively affect the formulations by increasing the Ohnesorge number and stabilizing the printing process. The dispensed volumes with a target dose of 0.5 mg HSA were dried and analyzed concerning their residual moisture (RM) and protein aggregation. All investigated formulations showed an RM < 10 wt% and no significant induced protein aggregation as confirmed by Size Exclusion Chromatography (<2.5%) and Dynamic Light Scattering (Aggregation Index ≤ 2.5). Additionally, long-term printability and the available final dose after reconstitution were investigated for two optimized formulations. A promising formulation providing ∼93% of the targeted dose and a reconstitution time of 30 s was identified.


Assuntos
Produtos Biológicos , Agregados Proteicos , Excipientes/química , Liofilização/métodos , Humanos , Polissorbatos
15.
Eur J Pharm Biopharm ; 174: 77-89, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35390451

RESUMO

To improve patient adherence, vaginal pessaries - polymeric structures providing mechanical support to treat stress urinary incontinence (SUI) - greatly benefit from 3D-printing through customization of their mechanics, e.g. infill modifications. However, currently only limited polymers provide both flawless printability and controlled drug release. The current study closes this gap by exploring 3D-printing, more specifically fused filament fabrication, of pharmaceutical grade thermoplastic polyurethanes (TPU) of different hardness and hydrophilicity into complex pessary structures. Next to the pessary mechanics, drug incorporation into such a device was addressed for the first time. Mechanically, the soft hydrophobic TPU was the most promising candidate for pessary customization, as pessaries made thereof covered a broad range of the key mechanical parameter, while allowing self-insertion. From the drug release point of view, the hydrophobic TPUs were superior over the hydrophilic one, as the release levels of the model drug acyclovir were closer to the target value. Summarizing, the fabrication of TPU-based pessaries via 3D-printing is an innovative strategy to create a customized pessary combination product that simultaneously provides mechanical support and pharmacological therapy.


Assuntos
Pessários , Impressão Tridimensional , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Feminino , Humanos , Preparações Farmacêuticas , Supositórios
16.
Int J Pharm ; 608: 121112, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34547391

RESUMO

Material extrusion-based additive manufacturing, commonly referred to as 3D-printing, is regarded as the key technology to pave the way for personalised medical treatment. This study explores the technique's potential in customising vaginal inserts with complex structures, so-called urethra pessaries. A novel, flawlessly 3D-printable and biocompatible polyester-based thermoplastic elastomer serves as the feedstock. Next to the smart selection of the 3D-printing parameters cross-sectional diameter and infill to tailor the pessary's mechanical properties, we elaborate test methods accounting for its application-specific requirements for the first time. The key property, i.e. the force the pessary exerts on the urethra to relief symptoms of urinary incontinence, is reliably adjusted within a broad range, including that of the commercial injection-moulded silicone product. The pessaries do not change upon long-term exposure to vaginal fluid simulant and compression (in-vivo conditions), satisfying the needs of repeated pessary use. Importantly, the vast majority of the 3D-printed pessaries allows for self-insertion and self-removal without any induced pessary rupture. Summarising, 3D-printed pessaries are not only a reasonable alternative to the commercial products, but build the basis to effectively treat inhomogeneous patient groups. They make the simple but very effective pessary therapy finally accessible to every woman.


Assuntos
Pessários , Incontinência Urinária , Elastômeros , Feminino , Humanos , Masculino , Impressão Tridimensional , Uretra
17.
J Control Release ; 335: 290-305, 2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-34044092

RESUMO

To improve patient compliance and personalised drug delivery, long-acting drug delivery devices (LADDDs), such as implants and inserts, greatly benefit from a customisation in their shape through the emerging 3D-printing technology, since their production usually follows a one-size-fits-most approach. The use of 3D-printing for LADDDs, however, is mainly limited by the shortage of flawlessly 3D-printable, yet biocompatible materials. The present study tackles this issue by introducing a novel, non-biodegradable material, namely a polyester-based thermoplastic elastomer (TPC) - a multi-block copolymer containing alternating semi-crystalline polybutylene terephthalate hard segments and poly-ether-terephthalate amorphous soft segments. Next to a detailed description of the material's 3D-printability by mechanical, rheological and thermal analyses, which was found to be superior to that of conventional polymers (ethylene-vinyl acetates (EVA)), this study establishes the fundamental understandings of the interactions between progesterone (P4) and TPC and drug-releasing properties of TPC for the first time. P4-loaded LADDDs based on TPC, prepared via an elaborated solvent-immersion technique, enable the release of P4 at pharmacologically relevant rates, similar to those of marketed formulations based on EVA and silicones. Additionally, TPC demonstrated an exceptional 3D-printability for a wide selection of implant sizes and complex geometries.


Assuntos
Elastômeros , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Poliésteres , Impressão Tridimensional
18.
Polymers (Basel) ; 12(12)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321876

RESUMO

Implantable drug delivery systems (IDDSs) offer good patient compliance and allow the controlled delivery of drugs over prolonged times. However, their application is limited due to the scarce material selection and the limited technological possibilities to achieve extended drug release. Porous structures are an alternative strategy that can overcome these shortcomings. The present work focuses on the development of porous IDDS based on hydrophilic (HPL) and hydrophobic (HPB) polyurethanes and chemical pore formers (PFs) manufactured by hot-melt extrusion. Different PF types and concentrations were investigated to gain a sound understanding in terms of extrudate density, porosity, compressive behavior, pore morphology and liquid uptake. Based on the rheological analyses, a stable extrusion process guaranteed porosities of up to 40% using NaHCO3 as PF. The average pore diameter was between 140 and 600 µm and was indirectly proportional to the concentration of PF. The liquid uptake of HPB was determined by the open pores, while for HPL both open and closed pores influenced the uptake. In summary, through the rational selection of the polymer type, the PF type and concentration, porous carrier systems can be produced continuously via extrusion, whose properties can be adapted to the respective application site.

19.
Pharmaceutics ; 12(6)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599822

RESUMO

To avoid any type of cross-contamination, residue-free production equipment is of utmost importance in the pharmaceutical industry. The equipment cleaning for continuous processes such as hot melt extrusion (HME), which has recently gained popularity in pharmaceutical applications, necessitates extensive manual labour and costs. The present work tackles the HME cleaning issue by investigating two cleaning strategies following the extrusion of polymeric formulations of a hormonal drug and for a sustained release formulation of a poorly soluble drug. First, an in-line quantification by means of UV-Vis spectroscopy was successfully implemented to assess very low active pharmaceutical ingredient (API) concentrations in the extrudates during a cleaning procedure for the first time. Secondly, a novel in-situ solvent-based cleaning approach was developed and its usability was evaluated and compared to a polymer-based cleaning sequence. Comparing the in-line data to typical swab and rinse tests of the process equipment indicated that inaccessible parts of the equipment were still contaminated after the polymer-based cleaning procedure, although no API was detected in the extrudate. Nevertheless, the novel solvent-based cleaning approach proved to be suitable for removing API residue from the majority of problematic equipment parts and can potentially enable a full API cleaning-in-place of a pharmaceutical extruder for the first time.

20.
J Mech Behav Biomed Mater ; 104: 103611, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31929095

RESUMO

The application of material extrusion-based additive manufacturing methods has recently become increasingly popular in the medical sector. Thereby, thermoplastic materials are likely to be used. However, thermoplastics are highly dependent on the temperature and loading rate in comparison to other material classes. Therefore, it is crucial to characterise these influences on the mechanical properties. On this account, dynamic mechanical analyses to investigate the application temperature range, and tensile tests at different crosshead speeds (103, 101, 10-1 and 10-3 mms-1) were performed on various 3D-printable polymers, namely polyetheretherketone (PEEK), polylactide (PLA), poly(methyl methacrylate) (PMMA), glycol-modified poly(ethylene terephthalate) (PETG), poly(vinylidene fluoride) (PVDF) and polypropylene (PP). It was found that the mechanical properties of PEEK, PLA, PMMA and PETG hardly depend on temperature changes inside the human body. PVDF and PP show a significant decrease in stiffness with increasing body temperatures. Additionally, the dependency of the stiffness on the strain-rate is increasing between PLA, PP, PEEK, PETG, PMMA and PVDF. Besides the mechanical integrity of these materials (strength, stiffness and its strain-rate and temperature dependency inside the body), the materials were further ranked considering their filling density as a measure of their processability. Hence, useful information for the selection of possible medical applications for each material and the design process of 3D-printed implants are provided.


Assuntos
Polímeros , Polimetil Metacrilato , Humanos , Teste de Materiais , Próteses e Implantes , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...