Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Commun Signal ; 21(1): 136, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316874

RESUMO

The dimerization of RAF kinases represents a key event in their activation cycle and in RAS/ERK pathway activation. Genetic, biochemical and structural approaches provided key insights into this process defining RAF signaling output and the clinical efficacy of RAF inhibitors (RAFi). However, methods reporting the dynamics of RAF dimerization in living cells and in real time are still in their infancy. Recently, split luciferase systems have been developed for the detection of protein-protein-interactions (PPIs), incl. proof-of-concept studies demonstrating the heterodimerization of the BRAF and RAF1 isoforms. Due to their small size, the Nanoluc luciferase moieties LgBiT and SmBiT, which reconstitute a light emitting holoenzyme upon fusion partner promoted interaction, appear as well-suited to study RAF dimerization. Here, we provide an extensive analysis of the suitability of the Nanoluc system to study the homo- and heterodimerization of BRAF, RAF1 and the related KSR1 pseudokinase. We show that KRASG12V promotes the homo- and heterodimerization of BRAF, while considerable KSR1 homo- and KSR1/BRAF heterodimerization already occurs in the absence of this active GTPase and requires a salt bridge between the CC-SAM domain of KSR1 and the BRAF-specific region. We demonstrate that loss-of-function mutations impairing key steps of the RAF activation cycle can be used as calibrators to gauge the dynamics of heterodimerization. This approach identified the RAS-binding domains and the C-terminal 14-3-3 binding motifs as particularly critical for the reconstitution of RAF mediated LgBiT/SmBiT reconstitution, while the dimer interface was less important for dimerization but essential for downstream signaling. We show for the first time that BRAFV600E, the most common BRAF oncoprotein whose dimerization status is controversially portrayed in the literature, forms homodimers in living cells more efficiently than its wildtype counterpart. Of note, Nanoluc activity reconstituted by BRAFV600E homodimers is highly sensitive to the paradox-breaking RAFi PLX8394, indicating a dynamic and specific PPI. We report the effects of eleven ERK pathway inhibitors on RAF dimerization, incl. third-generation compounds that are less-defined in terms of their dimer promoting abilities. We identify Naporafenib as a potent and long-lasting dimerizer and show that the split Nanoluc approach discriminates between type I, I1/2 and II RAFi. Video Abstract.


Assuntos
Proteínas Proto-Oncogênicas B-raf , Dimerização , Luciferases
2.
Leukemia ; 37(7): 1474-1484, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37161070

RESUMO

The persistence of leukemic stem cells (LSCs) represents a problem in the therapy of chronic myeloid leukemia (CML). Hence, it is of utmost importance to explore the underlying mechanisms to develop new therapeutic approaches to cure CML. Using the genetically engineered ScltTA/TRE-BCR::ABL1 mouse model for chronic phase CML, we previously demonstrated that the loss of the docking protein GAB2 counteracts the infiltration of mast cells (MCs) in the bone marrow (BM) of BCR::ABL1 positive mice. Here, we show for the first time that BCR::ABL1 drives the cytokine independent expansion of BM derived MCs and sensitizes them for FcεRI triggered degranulation. Importantly, we demonstrate that genetic mast cell deficiency conferred by the Cpa3Cre allele prevents BCR::ABL1 induced splenomegaly and impairs the production of pro-inflammatory cytokines. Furthermore, we show in CML patients that splenomegaly is associated with high BM MC counts and that upregulation of pro-inflammatory cytokines in patient serum samples correlates with tryptase levels. Finally, MC-associated transcripts were elevated in human CML BM samples. Thus, our study identifies MCs as essential contributors to disease progression and suggests considering them as an additional target in CML therapy. Mast cells play a key role in the pro-inflammatory tumor microenvironment of the bone marrow. Shown is a cartoon summarizing our results from the mouse model. BCR::ABL1 transformed MCs, as part of the malignant clone, are essential for the elevation of pro-inflammatory cytokines, known to be important in disease initiation and progression.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide , Humanos , Camundongos , Animais , Mastócitos/metabolismo , Esplenomegalia/etiologia , Esplenomegalia/prevenção & controle , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Citocinas , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Modelos Animais de Doenças , Inibidores de Proteínas Quinases/uso terapêutico , Microambiente Tumoral
3.
Cell Death Dis ; 13(4): 315, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393399

RESUMO

Micronuclei are DNA-containing structures separate from the nucleus found in cancer cells. Micronuclei are recognized by the immune sensor axis cGAS/STING, driving cancer metastasis. The mitochondrial apoptosis apparatus can be experimentally triggered to a non-apoptotic level, and this can drive the appearance of micronuclei through the Caspase-activated DNAse (CAD). We tested whether spontaneously appearing micronuclei in cancer cells are linked to sub-lethal apoptotic signals. Inhibition of mitochondrial apoptosis or of CAD reduced the number of micronuclei in tumor cell lines as well as the number of chromosomal misalignments in tumor cells and intestinal organoids. Blockade of mitochondrial apoptosis or deletion of CAD reduced, while experimental activation CAD, STING-dependently, enhanced aggressive growth of tumor cells in vitro. Deletion of CAD from human cancer cells reduced metastasis in xenograft models. CAD-deficient cells displayed a substantially altered gene-expression profile, and a CAD-associated gene expression 'signature' strongly predicted survival in cancer patients. Thus, low-level activity in the mitochondrial apoptosis apparatus operates through CAD-dependent gene-induction and STING-activation and has substantial impact on metastasis in cancer.


Assuntos
Desoxirribonucleases , Neoplasias , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Núcleo Celular/metabolismo , DNA/metabolismo , Desoxirribonucleases/metabolismo , Humanos , Neoplasias/metabolismo
4.
Leukemia ; 36(4): 970-982, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34903841

RESUMO

Internal tandem duplications (ITD) of the FMS-like tyrosine kinase 3 (FLT3) predict poor prognosis in acute myeloid leukemia (AML) and often co-exist with inactivating DNMT3A mutations. In vitro studies implicated Grb2-associated binder 2 (GAB2) as FLT3-ITD effector. Utilizing a Flt3-ITD knock-in, Dnmt3a haploinsufficient mouse model, we demonstrate that Gab2 is essential for the development of Flt3-ITD driven AML in vivo, as Gab2 deficient mice displayed prolonged survival, presented with attenuated liver and spleen pathology and reduced blast counts. Furthermore, leukemic bone marrow from Gab2 deficient mice exhibited reduced colony-forming unit capacity and increased FLT3 inhibitor sensitivity. Using transcriptomics, we identify the genes encoding for Axl and the Ret co-receptor Gfra2 as targets of the Flt3-ITD/Gab2/Stat5 axis. We propose a pathomechanism in which Gab2 increases signaling of these receptors by inducing their expression and by serving as downstream effector. Thereby, Gab2 promotes AML aggressiveness and drug resistance as it incorporates these receptor tyrosine kinases into the Flt3-ITD signaling network. Consequently, our data identify GAB2 as a promising biomarker and therapeutic target in human AML.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Leucemia Mieloide Aguda , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Mutação , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Tirosina Quinase 3 Semelhante a fms/metabolismo
5.
Oncogene ; 39(4): 814-832, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31558800

RESUMO

Fusion proteins involving the BRAF serine/threonine kinase occur in many cancers. The oncogenic potential of BRAF fusions has been attributed to the loss of critical N-terminal domains that mediate BRAF autoinhibition. We used whole-exome and RNA sequencing in a patient with glioblastoma multiforme to identify a rearrangement between TTYH3, encoding a membrane-resident, calcium-activated chloride channel, and BRAF intron 1, resulting in a TTYH3-BRAF fusion protein that retained all features essential for BRAF autoinhibition. Accordingly, the BRAF moiety of the fusion protein alone, which represents full-length BRAF without the amino acids encoded by exon 1 (BRAFΔE1), did not induce MEK/ERK phosphorylation or transformation. Likewise, neither the TTYH3 moiety of the fusion protein nor full-length TTYH3 provoked ERK pathway activity or transformation. In contrast, TTYH3-BRAF displayed increased MEK phosphorylation potential and transforming activity, which were caused by TTYH3-mediated tethering of near-full-length BRAF to the (endo)membrane system. Consistent with this mechanism, a synthetic approach, in which BRAFΔE1 was tethered to the membrane by fusing it to the cytoplasmic tail of CD8 also induced transformation. Furthermore, we demonstrate that TTYH3-BRAF signals largely independent of a functional RAS binding domain, but requires an intact BRAF dimer interface and activation loop phosphorylation sites. Cells expressing TTYH3-BRAF exhibited increased MEK/ERK signaling, which was blocked by clinically achievable concentrations of sorafenib, trametinib, and the paradox breaker PLX8394. These data provide the first example of a fully autoinhibited BRAF protein whose oncogenic potential is dictated by a distinct fusion partner and not by a structural change in BRAF itself.


Assuntos
Glioblastoma/genética , Glioblastoma/patologia , Compostos Heterocíclicos com 2 Anéis/farmacologia , Proteínas de Fusão Oncogênica , Proteínas Proto-Oncogênicas B-raf/genética , Piridonas/farmacologia , Pirimidinonas/farmacologia , Sulfonamidas/farmacologia , Idoso , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosforilação , Domínios Proteicos , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/metabolismo , Transdução de Sinais
7.
Oncogene ; 38(8): 1324-1339, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30659267

RESUMO

Copy number gains, point mutations and epigenetic silencing events are increasingly observed in genes encoding elements of the Ras/Raf/MEK/ERK signaling axis in human breast cancer. The three Raf kinases A-Raf, B-Raf, and Raf-1 have an important role as gatekeepers in ERK pathway activation and are often dysregulated by somatic alterations of their genes or by the aberrant activity of receptor tyrosine kinases (RTKs) and Ras-GTPases. B-Raf represents the most potent Raf isoform and a critical effector downstream of RTKs and RAS proteins. Aberrant RTK signaling is mimicked by the polyoma middle T antigen (PyMT), which activates various oncogenic signaling pathways, incl. the RAS/ERK axis, in a similar manner as RTKs in human breast cancer. Mammary epithelial cell directed expression of PyMT in mice by the MMTV-PyMT transgene induces mammary hyperplasia progressing over adenoma to metastatic breast cancer with an almost complete penetrance. To understand the functional role of B-Raf in this model for luminal type B breast cancer, we crossed MMTV-PyMT mice with animals that either lack B-Raf expression in the mammary gland or express the signaling impaired B-RafAVKA mutant. The AVKA mutation prevents phosphorylation of T599 and S602 in the B-Raf activation loop and thereby activation of the kinase by upstream signals. We demonstrate for the first time that B-Raf expression and activation is important for tumor initiation in vivo as well as for lung metastasis. Isogenic tumor cell lines generated from conditional Braf knock-out or knock-in mice displayed a reduction in EGF-induced ERK pathway activity as well as in proliferation and invasive growth in three-dimensional matrigel cultures. Our results suggest that B-Raf, which has been hardly studied in the context of breast cancer, represents a critical effector of the PyMT oncoprotein and invite for an assessment of its functional role in human breast cancer.


Assuntos
Neoplasias da Mama/genética , Transformação Celular Neoplásica/genética , Neoplasias Mamárias Animais/genética , Proteínas Proto-Oncogênicas B-raf/genética , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Modelos Animais de Doenças , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Knockout , Mutação , Proteínas Proto-Oncogênicas A-raf/genética , Proteínas Proto-Oncogênicas B-raf/deficiência , Proteínas Proto-Oncogênicas c-raf/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...