Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 8(6): e2875, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28617445

RESUMO

BRCA2 encodes a protein with a fundamental role in homologous recombination that is essential for normal development. Carrier status of mutations in BRCA2 is associated with familial breast and ovarian cancer, while bi-allelic BRCA2 mutations can cause Fanconi anemia (FA), a cancer predisposition syndrome with cellular cross-linker hypersensitivity. Cancers associated with BRCA2 mutations can acquire chemo-resistance on relapse. We modeled acquired cross-linker resistance with an FA-derived BRCA2-mutated acute myeloid leukemia (AML) platform. Associated with acquired cross-linker resistance was the expression of a functional BRCA2 protein variant lacking exon 5 and exon 7 (BRCA2ΔE5+7), implying a role for BRCA2 splicing for acquired chemo-resistance. Integrated network analysis of transcriptomic and proteomic differences for phenotyping of BRCA2 disruption infers impact on transcription and chromatin remodeling in addition to the DNA damage response. The striking overlap with transcriptional profiles of FA patient hematopoiesis and BRCA mutation associated ovarian cancer helps define and explicate the 'BRCAness' profile.


Assuntos
Processamento Alternativo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Resistencia a Medicamentos Antineoplásicos , Genes BRCA2 , Mutação , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Éxons , Anemia de Fanconi/tratamento farmacológico , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Feminino , Predisposição Genética para Doença , Humanos , Íntrons , Células K562 , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Recidiva Local de Neoplasia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Fenótipo , Splicing de RNA , Transcrição Gênica
2.
Mol Cell Proteomics ; 12(11): 3319-29, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23997015

RESUMO

CXCL12 governs cellular motility, a process deregulated by hematopoietic stem cell oncogenes such as p210-BCR-ABL. A phosphoproteomics approach to the analysis of a hematopoietic progenitor cell line treated with CXCL12 and the Rac 1 and 2 inhibitor NSC23766 has been employed to objectively discover novel mechanisms for regulation of stem cells in normal and malignant hematopoiesis. The proteomic data sets identified new aspects of CXCL12-mediated signaling and novel features of stem cell regulation. We also identified a novel phosphorylation event in hematopoietic progenitor cells that correlated with motile response and governed by the chemotactic factor CXCL12. The novel phosphorylation site on PTPRC/CD45; a protein tyrosine phosphatase, was validated by raising an antibody to the site and also using a mass spectrometry absolute quantification strategy. Site directed mutagenesis and inhibitor studies demonstrated that this single phosphorylation site governs hematopoietic progenitor cell and lymphoid cell motility, lies downstream from Rac proteins and potentiates Src signaling. We have also demonstrated that PTPRC/CD45 is down-regulated in leukemogenic tyrosine kinase expressing cells. The use of discovery proteomics has enabled further understanding of the regulation of PTPRC/CD45 and its important role in cellular motility in progenitor cells.


Assuntos
Movimento Celular/fisiologia , Quimiocina CXCL12/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Aminoquinolinas/farmacologia , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Antígenos Comuns de Leucócito/química , Antígenos Comuns de Leucócito/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Proteômica , Pirimidinas/farmacologia , Transdução de Sinais
3.
PLoS One ; 7(6): e38928, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22745689

RESUMO

Mutated tyrosine kinases are associated with a number of different haematological malignancies including myeloproliferative disorders, lymphoma and acute myeloid leukaemia. The potential commonalities in the action of six of these leukemogenic proteins on nuclear proteins were investigated using systematic proteomic analysis. The effects on over 3600 nuclear proteins and 1500 phosphopeptide sites were relatively quantified in seven isogenic cell lines. The effects of the kinases were diverse although some commonalities were found. Comparison of the nuclear proteomic data with transcriptome data and cytoplasmic proteomic data indicated that the major changes are due to post-translational mechanisms rather than changes in mRNA or protein distribution. Analysis of the promoter regions of genes whose protein levels changed in response to the kinases showed the most common binding site found was that for NFκB whilst other sites such as those for the glucocorticoid receptor were also found. Glucocorticoid receptor levels and phosphorylation were decreased by all 6 PTKs. Whilst Glucocorticoid receptor action can potentiate NFκB action those proteins where genes have NFκB binding sites were in often regulated post-translationally. However all 6 PTKs showed evidence of NFkB pathway modulation via activation via altered IkB and NFKB levels. Validation of a common change was also undertaken with PMS2, a DNA mismatch repair protein. PMS2 nuclear levels were decreased in response to the expression of all 6 kinases, with no concomitant change in mRNA level or cytosolic protein level. Response to thioguanine, that requires the mismatch repair pathway, was modulated by all 6 oncogenic kinases. In summary common targets for 6 oncogenic PTKs have been found that are regulated by post-translational mechanisms. They represent potential new avenues for therapies but also demonstrate the post-translational regulation is a key target of leukaemogenic kinases.


Assuntos
Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinases/metabolismo , Animais , Linhagem Celular , Espectrometria de Massas , Camundongos , Processamento de Proteína Pós-Traducional , Proteômica , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais
4.
J Proteomics ; 77: 14-26, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22705319

RESUMO

BCR/ABL expression is the key characteristic of chronic myeloid leukaemia (CML). The progression of CML is associated with genomic instability. Systematic analysis of DNA damage signalling in the presence of BCR/ABL thus offers opportunities to identify mechanisms of leukaemic progression. We therefore undertook a quantitative phosphoproteomics study to test whether BCR/ABL expression could globally affect the response to genotoxic stress signalling. Etoposide-induced DNA damage was chosen and the concentration and time of exposure determined such that apoptosis was not associated with the study. More than 1100 phosphoentities were identified. BCR/ABL was shown to significantly alter the response to etoposide in many cases. These include sites on MDC1, a key component of DNA repair, and Hemogen. Hemogen is a transcriptional target of HOXB4 and GATA1, two transcription factors involved in haemopoietic development, and is overexpressed in acute myeloid leukaemia. To validate Hemogen phosphorylation, absolute quantification using an isotopomeric standard and selected reaction monitoring was performed. This revealed a strong correlation with isobaric tagging data and offering quantification at about 10 fmol per million cells. Furthermore we found that multiple protein phosphorylation changes mediated by BCR/ABL were connected to the increased activation of NFκB, a key survival transcription factor, after etoposide exposure.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Dano ao DNA , Etoposídeo/farmacologia , Proteínas de Fusão bcr-abl/metabolismo , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/mortalidade , Proteínas Tirosina Quinases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Camundongos , Proteínas Nucleares/metabolismo , Fosforilação/efeitos dos fármacos
5.
PLoS One ; 6(1): e16330, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21297973

RESUMO

Acute leukaemias are commonly caused by mutations that corrupt the transcriptional circuitry of haematopoietic stem/progenitor cells. However, the mechanisms underlying large-scale transcriptional reprogramming remain largely unknown. Here we investigated transcriptional reprogramming at genome-scale in mouse retroviral transplant models of acute myeloid leukaemia (AML) using both gene-expression profiling and ChIP-sequencing. We identified several thousand candidate regulatory regions with altered levels of histone acetylation that were characterised by differential distribution of consensus motifs for key haematopoietic transcription factors including Gata2, Gfi1 and Sfpi1/Pu.1. In particular, downregulation of Gata2 expression was mirrored by abundant GATA motifs in regions of reduced histone acetylation suggesting an important role in leukaemogenic transcriptional reprogramming. Forced re-expression of Gata2 was not compatible with sustained growth of leukaemic cells thus suggesting a previously unrecognised role for Gata2 in downregulation during the development of AML. Additionally, large scale human AML datasets revealed significantly higher expression of GATA2 in CD34+ cells from healthy controls compared with AML blast cells. The integrated genome-scale analysis applied in this study represents a valuable and widely applicable approach to study the transcriptional control of both normal and aberrant haematopoiesis and to identify critical factors responsible for transcriptional reprogramming in human cancer.


Assuntos
Fator de Transcrição GATA2/genética , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/genética , Transcrição Gênica , Acetilação , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Histonas/metabolismo , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Células-Tronco Neoplásicas , Análise de Sequência de DNA , Fatores de Transcrição/genética
6.
BMC Biol ; 8: 1, 2010 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-20051105

RESUMO

BACKGROUND: The transcription/export complex is evolutionarily conserved from yeast to man and is required for coupled transcription elongation and nuclear export of mRNAs. FMIP(Fms interacting protein) is a member of the THO (suppressors of the transcriptional defects of hpr1delta by overexpression) complex which is a subcomplex of the transcription/export complex. THO complex (THOC) components are not essential for bulk poly (A)+ RNA export in higher eukaryotes, but for the nuclear export of subset of mRNAs, however, their exact role is still unclear. RESULTS: To study the role of THOC5/Fms interacting protein in vivo, we generated THOC5/Fms interacting protein knockout mice. Since these mice are embryonic lethal, we then generated interferon inducible conditional THOC5/Fms interacting protein knockout mice. After three poly injections all of the mice died within 14 days. No pathological alterations, however, were observed in liver, kidney or heart. Thus we considered the hematopoietic system and found that seven days after poly injection, the number of blood cells in peripheral blood decreased drastically. Investigation of bone marrow cells showed that these became apoptotic within seven days after poly injection. Committed myeloid progenitor cells and cells with long term reconstituting potential were lost from bone marrow within four days after poly injection. Furthermore, infusion of normal bone marrow cells rescued mice from death induced by loss of THOC5/Fms interacting protein. CONCLUSION: THOC5/Fms interacting protein is an essential element in the maintenance of hematopoiesis. Furthermore, mechanistically depletion of THOC5/Fms interacting protein causes the down-regulation of its direct interacting partner, THOC1 which may contribute to altered THO complex function and cell death.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a RNA/metabolismo , Anemia/metabolismo , Animais , Apoptose/fisiologia , Células Sanguíneas/fisiologia , Células da Medula Óssea/fisiologia , Transplante de Medula Óssea , Sobrevivência Celular/fisiologia , Hepatócitos/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Leucócitos/fisiologia , Leucopenia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/metabolismo
7.
Mol Cell Proteomics ; 7(3): 573-81, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18083999

RESUMO

In hematopoiesis, co-expression of Sca-1 and c-Kit defines cells (LS(+)K) with long term reconstituting potential. In contrast, poorly characterized LS(-)K cells fail to reconstitute lethally irradiated recipients. Relative quantification mass spectrometry and transcriptional profiling were used to characterize LS(+)K and LS(-)K cells. This approach yielded data on >1200 proteins. Only 32% of protein changes correlated to mRNA modulation demonstrating post-translational protein regulation in early hematopoietic development. LS(+)K cells had lower expression of protein synthesis proteins but did express proteins associated with mature cell function. Major increases in erythroid development proteins were observed in LS(-)K cells; based on this assessment of erythroid potential we showed them to be principally erythroid progenitors, demonstrating effective use of discovery proteomics for definition of primitive cells.


Assuntos
Linhagem da Célula , Células-Tronco Hematopoéticas/química , Células-Tronco Hematopoéticas/citologia , Proteômica/métodos , Animais , Ataxina-1 , Ataxinas , Biomarcadores/química , Biomarcadores/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Fenótipo , Proteoma , Proteínas Proto-Oncogênicas c-kit/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
Mol Cell Proteomics ; 7(5): 853-63, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-17951628

RESUMO

There are a number of leukemogenic protein-tyrosine kinases (PTKs) associated with leukemic transformation. Although each is linked with a specific disease their functional activity poses the question whether they have a degree of commonality in their effects upon target cells. Exon array analysis of the effects of six leukemogenic PTKs (BCR/ABL, TEL/PDGFRbeta, FIP1/PDGFRalpha, D816V KIT, NPM/ALK, and FLT3ITD) revealed few common effects on the transcriptome. It is apparent, however, that proteome changes are not directly governed by transcriptome changes. Therefore, we assessed and used a new generation of iTRAQ tagging, enabling eight-channel relative quantification discovery proteomics, to analyze the effects of these six leukemogenic PTKs. Again these were found to have disparate effects on the proteome with few common targets. BCR/ABL had the greatest effect on the proteome and had more effects in common with FIP1/PDGFRalpha. The proteomic effects of the four type III receptor kinases were relatively remotely related. The only protein commonly affected was eosinophil-associated ribonuclease 7. Five of six PTKs affected the motility-related proteins CAPG and vimentin, although this did not correspond to changes in motility. However, correlation of the proteomics data with that from the exon microarray not only showed poor levels of correlation between transcript and protein levels but also revealed alternative patterns of regulation of the CAPG protein by different oncogenes, illustrating the utility of such a combined approach.


Assuntos
Leucemia/enzimologia , Espectrometria de Massas/métodos , Proteínas Oncogênicas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteoma/análise , Proteômica/métodos , Animais , Linhagem Celular , Quimiotaxia , Éxons , Perfilação da Expressão Gênica , Leucemia/genética , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Oncogênicas/genética , Biossíntese de Proteínas/genética , Proteínas Serina-Treonina Quinases/genética , Proteoma/genética , Proteoma/metabolismo
9.
Br J Haematol ; 133(3): 345-52, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16643438

RESUMO

The chemokine, stromal cell-derived factor-1 (SDF-1) is a crucial regulator of stem cell homing and tethering, and potentiation of this pathway in leukaemias may contribute to the pathogenesis of the disease. A key second messenger in SDF-1 signal/response coupling is phosphatidylinositol 3,4,5-triphosphate [PtdIns(3,4,5)P3]. SDF-1 elevated PtdIns(3,4,5)P3 levels markedly in the multipotent FDCP-mix stem cell line. Similarly, transfection with BCR/ABL or TEL/PDGFRbeta leukaemogenic tyrosine kinases chronically elevated PtdIns(3,4,5)P3 levels. However, whilst an SDF-1 chemotactic response was observed in TEL/PDGFRbeta-transfected cells, in BCR/ABL cells this was markedly decreased, which was not due to Ras-pathway activation. Thus, multipotent cells can respond to SDF-1, despite chronic increases in this second messenger indicating that a discrete pool of SDF-1-stimulated PtdIns(3,4,5)P3 production drives the chemotactic response. To discern the mechanism for the differential effects of these oncogenes we considered subcellular localisation. As TEL/PDGFRbeta has a cytosolic location whilst BCR/ABL associates with actin, we removed the actin-binding domain from BCR/ABL. We observed relocation of BCR/ABL to the cytosol and increased SDF-1 responses. We conclude that the localisation of BCR/ABL to the cytoskeleton is essential for effects on motility and moderating SDF-1 responses is not essential in tyrosine kinase-mediated leukaemic transformation.


Assuntos
Transformação Celular Neoplásica/metabolismo , Quimiocinas CXC/farmacologia , Quimiotaxia/fisiologia , Proteínas de Fusão bcr-abl/fisiologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Actinas/metabolismo , Animais , Linhagem Celular , Quimiocina CXCL12 , Quimiotaxia/efeitos dos fármacos , Citoesqueleto/metabolismo , Relação Dose-Resposta a Droga , Proteínas de Fusão bcr-abl/análise , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/fisiologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Camundongos , Proteínas de Fusão Oncogênica/metabolismo , Fosfatidilinositol 3-Quinases/fisiologia , Fosfatos de Fosfatidilinositol/biossíntese , Transdução de Sinais , Transfecção
10.
Blood ; 107(12): 4687-94, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16507774

RESUMO

The proteome is determined by rates of transcription, translation, and protein turnover. Definition of stem cell populations therefore requires a stem cell proteome signature. However, the limit to the number of primary cells available has restricted extensive proteomic analysis. We present a mass spectrometric method using an isobaric covalent modification of peptides for relative quantification (iTRAQ), which was employed to compare the proteomes of approximately 1 million long-term reconstituting hematopoietic stem cells (Lin(-)Sca(+)Kit(+); LSK(+)) and non-long-term reconstituting progenitor cells (Lin(-)Sca(+)Kit(-); LSK(-)), respectively. Extensive 2-dimensional liquid chromatography (LC) peptide separation prior to mass spectrometry (MS) enabled enhanced proteome coverage with relative quantification of 948 proteins. Of the 145 changes in the proteome, 54% were not seen in the transcriptome. Hypoxia-related changes in proteins controlling metabolism and oxidative protection were observed, indicating that LSK(+) cells are adapted for anaerobic environments. This approach can define proteomic changes in primary samples, thereby characterizing the molecular signature of stem cells and their progeny.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Proteoma/metabolismo , Proteômica , Animais , Hipóxia Celular , Cromatografia Líquida , Espectrometria de Massas , Camundongos , Oxirredução , Proteoma/genética
11.
Blood ; 103(10): 3751-9, 2004 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-14764529

RESUMO

Lineage-marker depleted (Lin(-)) murine bone marrow cells expressing stem cell antigen 1 (Sca-1) were sorted on the basis of stem cell factor receptor (c-kit) expression to obtain Lin(-)Sca(+)Kit(+) or Lin(-)Sca(+)Kit(-) cells. Lin(-)Sca(+)Kit(-) cells have a markedly greater chemotactic response to stromal derived factor-1 (SDF-1). Using a novel fluorescent stain, we show that both populations generate similar levels of a key messenger, phosphatidylinositol 3,4,5 trisphosphate (PIP(3)), in response to SDF-1. Differences in motile behavior may therefore lie downstream of phosphatidylinositol 3-kinase (PI3-kinase) activation at the level of cytoskeleton regulation. The 2 cell populations were compared using 2-dimensional difference gel electrophoresis (2D-DIGE), with a maleimide CyDye fluorescent protein labeling technique that has enhanced sensitivity for low abundance samples. Comparative proteomic analysis of Cy3- and Cy5-labeled protein samples allows relative quantification of protein spots present in both cell populations; of these, 73% were common. Key protein differences were adseverin and gelsolin, actin micro-filament splicing proteins, regulated by Rac, downstream of PI3-kinase activation. Adseverin was shown to be acetylated, a novel modification for this protein. Differences in major regulators of cell shape and motility between the 2 populations can explain the differential response to SDF-1.


Assuntos
Quimiotaxia/genética , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Proteômica , Proteínas Proto-Oncogênicas c-kit/análise , Acetilação , Animais , Células da Medula Óssea , Tamanho Celular/genética , Células Cultivadas , Quimiocina CXCL12 , Quimiocinas CXC/farmacologia , Quimiotaxia/efeitos dos fármacos , Gelsolina/análise , Células-Tronco Hematopoéticas/química , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/análise , Proteínas dos Microfilamentos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/análise , Proteínas/análise , Proteínas/genética
12.
Br J Haematol ; 122(6): 985-95, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12956770

RESUMO

The H-2Kappab temperature-sensitive (ts) A58 transgenic (Immorto) mouse has been used previously to generate conditionally immortalized cells from a number of tissues. The present study aimed to investigate characteristics of primitive myeloid precursor cells derived from H-2Kappab-tsA58 bone marrow. Cell populations were enriched for granulocyte/macrophage progenitors by centrifugal elutriation, and were cultured in the presence and absence of cytokines at the permissive and restrictive temperatures for the A58 oncogene. Cells derived from H-2Kappab-tsA58 mice required both A58 activation and the growth factors, stem cell factor (SCF) and interleukin-3 (IL-3), for long-term cell survival and growth; cells were maintained for > 300 d in culture under these conditions. IL-3- and SCF-dependent clonal cell lines were derived with a phenotype (lin-, Sca-1+, CD34+, ER-MP 58+, ER-MP 12+, ER-MP 20-) characteristic of primitive myeloid progenitors. These cells differentiated on addition of granulocyte/macrophage colony-stimulating factor (GM-CSF) or macrophage colony-stimulating factor (M-CSF) and acquired mature cell morphology with some upregulation of differentiation markers. In conclusion, the A58 oncogene can immortalize haemopoietic progenitor cells. These cells require two cytokines for growth, IL-3 and SCF; as such, they constitute a useful resource for the study of synergistic interactions between growth factors. The ability to develop monocytic cell characteristics also permits the investigation of cytokine-mediated early haemopoietic progenitor cell development.


Assuntos
Células-Tronco Hematopoéticas/citologia , Interleucina-3/farmacologia , Fator de Células-Tronco/farmacologia , Animais , Células da Medula Óssea/citologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Linhagem Celular , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Substâncias de Crescimento/farmacologia , Antígenos H-2/genética , Células-Tronco Hematopoéticas/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Proteínas Recombinantes/farmacologia , Células Estromais/citologia
13.
Blood ; 102(8): 2798-802, 2003 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12829605

RESUMO

Hematopoiesis is sustained by the proliferation and development of an extremely low number of hematopoietic stem cells resident in the bone marrow. These stem cells can migrate from their bone marrow microenvironment and can be found at low levels in the peripheral blood. The factors that regulate egress or ingress of the stem cells from the marrow include cytokines and chemokines. This process of stem cell trafficking is fundamental to both stem cell biology and stem cell transplantation. We show that primitive hematopoietic cells with cobblestone area-forming cell activity express receptors for and display enhanced motility in response to a new class of stem cell agonists, namely lysophospholipids. These agents synergistically promote chemokine-stimulated cell chemotaxis, a process that is crucial in stem cell homing. The response to lysophospholipids is mediated by Rac, Rho, and Cdc42 G proteins and the hematopoietic-specific guanyl nucleotide exchange factor Vav 1. Inhibitor studies also show a critical role for phosphatidylinositol 3 kinase (PI3K). Lipid mediators, therefore, regulate the critical process of primitive hematopoietic cell motility via a PI3K- and Vav-dependent mechanism and may govern stem cell movement in vivo. These results are of relevance to understanding stem cell trafficking during bone marrow transplantation.


Assuntos
Proteínas de Ciclo Celular , Células-Tronco Hematopoéticas/citologia , Lisofosfolipídeos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Divisão Celular , Movimento Celular , Quimiotaxia , Citocinas/metabolismo , DNA Complementar/metabolismo , Metabolismo dos Lipídeos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fenótipo , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas c-vav , Transdução de Sinais , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
14.
Oncogene ; 21(19): 3068-75, 2002 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-12082538

RESUMO

Chronic myeloid leukaemia (CML), a hematopoietic stem cell disorder is characterized by the expression of BCR-ABL. To investigate the effects of BCR-ABL on multipotent hematopoietic cells, a temperature sensitive BCR-ABL tyrosine kinase was expressed in the cell line, FDCP-Mix. BCR-ABL mediated an increase in c-kit expression that correlated with an enhanced mitogenic response to SCF. This was not observed in the absence of Bcr-Abl kinase activity or presence of the BCR-ABL inhibitor STI571, which also inhibits c-kit. When cultured in a combination of SCF plus G-CSF the FDCP-Mix cells undergo neutrophilic differentiation over a 7-10 day period. When BCR-ABL was active there was a marked inhibition of cell maturation compared to control cells in which BCR-ABL was either inactive or not present. However, BCR-ABL did not block differentiation as the cells eventually undergo terminal maturation. These data argue that BCR-ABL is directly responsible for the enhanced response to SCF reported in CML progenitor cells. Furthermore, although the primary effect of STI571 is via direct inhibition of BCR-ABL, STI571 additionally reduces the enhanced response to SCF. Thus there are two sites of STI571 action of potential importance in Bcr-Abl expressing cells.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Proteínas de Fusão bcr-abl/fisiologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Piperazinas/farmacologia , Pirimidinas/farmacologia , Fator de Células-Tronco/farmacologia , Benzamidas , Diferenciação Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular/efeitos dos fármacos , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Fator Estimulador de Colônias de Granulócitos/farmacologia , Humanos , Mesilato de Imatinib , Neutrófilos/citologia , Proteínas Proto-Oncogênicas c-kit/biossíntese , Proteínas Proto-Oncogênicas c-kit/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...