Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 4454, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872631

RESUMO

Our paper analyzes full plastid DNA sequence data of 202 wild and cultivated diploid potatoes, Solanum section Petota, to explore its phylogenetic utility compared to prior analyses of the same accessions using genome-wide nuclear SNPs, and plastid DNA restriction site data. The present plastid analysis discovered the same major clades as the nuclear data but with some substantial differences in topology within the clades. The considerably larger plastid and nuclear data sets add phylogenetic resolution within the prior plastid DNA restriction site data, highlight plastid/nuclear incongruence that supports hypotheses of hybridization/introgression to help explain the taxonomic difficulty in the section.


Assuntos
Genomas de Plastídeos , Filogenia , Solanum/genética , Diploide , Variação Genética , Polimorfismo de Nucleotídeo Único
3.
Am J Bot ; 105(1): 60-70, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29532930

RESUMO

PREMISE OF THE STUDY: The species boundaries of wild and cultivated potatoes are controversial, with most of the taxonomic problems in the cultivated potato clade. We here provide the first in-depth phylogenetic study of the cultivated potato clade to explore possible causes of these problems. METHODS: We examined 131 diploid accessions, using 12 nuclear orthologs, producing an aligned data set of 14,072 DNA characters, 2171 of which are parsimony-informative. We analyzed the data to produce phylogenies and perform concordance analysis and goodness-of-fit tests. KEY RESULTS: There is good phylogenetic structure in clades traditionally referred to as clade 1+2 (North and Central American diploid potatoes exclusive of Solanum verrucosum), clade 3, and a newly discovered basal clade, but drastically reduced phylogenetic structure in clade 4, the cultivated potato clade. The results highlight a clade of species in South America not shown before, 'neocardenasii', sister to clade 1+2, that possesses key morphological traits typical of diploids in Mexico and Central America. Goodness-of-fit tests suggest potential hybridization between some species of the cultivated potato clade. However, we do not have enough phylogenetic signal with the data at hand to explicitly estimate such hybridization events with species networks methods. CONCLUSIONS: We document the close relationships of many of the species in the cultivated potato clade, provide insight into the cause of their taxonomic problems, and support the recent reduction of species in this clade. The discovery of the neocardenasii clade forces a reevaluation of a hypothesis that section Petota originated in Mexico and Central America.


Assuntos
Evolução Molecular , Filogenia , Solanum/genética , Análise de Sequência de DNA , Solanum/classificação
4.
Front Genet ; 8: 119, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28983315

RESUMO

DNA-based marker analysis of plant genebank material has become a useful tool in the evaluation of levels of genetic diversity and for the informed use and maintenance of germplasm. In this study, we quantify levels of amplified fragment length polymorphism (AFLP) in representative accessions of wild and cultivated potato species of differing geographic origin, ploidy, and breeding system. We generated 449 polymorphic AFLP fragments in 619 plants, representing multiple plants (16-23) from 17 accessions of 14 potato taxa as well as single plants sampled from available accessions (from 3 to 56) of the same 14 taxa. Intra-accession diversities were compared to those of a synthetic 'taxon-wide' population comprising a single individual from a variable number of available accessions of each sampled taxon. Results confirm the expected considerably lower levels of polymorphism within accessions of self-compatible as compared to self-incompatible taxa. We observed broadly similar levels of 'taxon-wide' polymorphism among self-compatible and self-incompatible species, with self-compatible taxa showing only slightly lower rates of polymorphism. The most diverse accessions were the two cultivated potato accessions examined, the least diverse being the Mexican allohexaploids Solanum demissum and S. iopetalum. Generally allopolyploid self-compatible accessions exhibited lower levels of diversity. Some purported self-incompatible accessions showed relatively low levels of marker diversity, similar to the more diverse self-compatible material surveyed. Our data indicate that for self-compatible species a single plant is highly representative of a genebank accession. The situation for self-incompatible taxa is less clear, and sampling strategies used will depend on the type of investigation. These results have important implications for those seeking novel trait variation (e.g., disease resistance) in gene banks as well as for the selection of individuals for genomics studies. We also show that AFLPs, despite having been largely replaced by other marker types, is highly suitable for the evaluation of within and between accession diversity in genebanks.

5.
Am J Bot ; 104(2): 296-312, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28202452

RESUMO

PREMISE OF THE STUDY: We explored the phylogenetic utility of entire plastid DNA sequences in Daucus and compared the results with prior phylogenetic results using plastid and nuclear DNA sequences. METHODS: We used Illumina sequencing to obtain full plastid sequences of 37 accessions of 20 Daucus taxa and outgroups, analyzed the data with phylogenetic methods, and examined evidence for mitochondrial DNA transfer to the plastid (DcMP). KEY RESULTS: Our phylogenetic trees of the entire data set were highly resolved, with 100% bootstrap support for most of the external and many of the internal clades, except for the clade of D. carota and its most closely related species D. syrticus. Subsets of the data, including regions traditionally used as phylogenetically informative regions, provide various degrees of soft congruence with the entire data set. There are areas of hard incongruence, however, with phylogenies using nuclear data. We extended knowledge of a mitochondrial to plastid DNA insertion sequence previously named DcMP and identified the first instance in flowering plants of a sequence of potential nuclear genome origin inserted into the plastid genome. There is a relationship of inverted repeat junction classes and repeat DNA to phylogeny, but no such relationship with nonsynonymous mutations. CONCLUSIONS: Our data have allowed us to (1) produce a well-resolved plastid phylogeny of Daucus, (2) evaluate subsets of the entire plastid data for phylogeny, (3) examine evidence for plastid and nuclear DNA phylogenetic incongruence, and (4) examine mitochondrial and nuclear DNA insertion into the plastid.


Assuntos
Núcleo Celular/genética , Daucus carota/genética , Genoma Mitocondrial/genética , Genoma de Planta/genética , Genomas de Plastídeos/genética , Filogenia , DNA de Cloroplastos/genética , DNA Mitocondrial/genética , DNA de Plantas/química , DNA de Plantas/classificação , DNA de Plantas/genética , Daucus carota/classificação , Genes de Plantas/genética , Mutagênese Insercional , Proteínas de Plantas/genética , Plastídeos/genética , Análise de Sequência de DNA , Especificidade da Espécie
6.
BMC Evol Biol ; 16(1): 234, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27793080

RESUMO

BACKGROUND: The majority of the subspecies of Daucus carota have not yet been discriminated clearly by various molecular or morphological methods and hence their phylogeny and classification remains unresolved. Recent studies using 94 nuclear orthologs and morphological characters, and studies employing other molecular approaches were unable to distinguish clearly many of the subspecies. Fertile intercrosses among traditionally recognized subspecies are well documented. We here explore the utility of single nucleotide polymorphisms (SNPs) generated by genotyping-by-sequencing (GBS) to serve as an effective molecular method to discriminate the subspecies of the D. carota complex. RESULTS: We used GBS to obtain SNPs covering all nine Daucus carota chromosomes from 162 accessions of Daucus and two related genera. To study Daucus phylogeny, we scored a total of 10,814 or 38,920 SNPs with a maximum of 10 or 30 % missing data, respectively. To investigate the subspecies of D. carota, we employed two data sets including 150 accessions: (i) rate of missing data 10 % with a total of 18,565 SNPs, and (ii) rate of missing data 30 %, totaling 43,713 SNPs. Consistent with prior results, the topology of both data sets separated species with 2n = 18 chromosome from all other species. Our results place all cultivated carrots (D. carota subsp. sativus) in a single clade. The wild members of D. carota from central Asia were on a clade with eastern members of subsp. sativus. The other subspecies of D. carota were in four clades associated with geographic groups: (1) the Balkan Peninsula and the Middle East, (2) North America and Europe, (3) North Africa exclusive of Morocco, and (4) the Iberian Peninsula and Morocco. Daucus carota subsp. maximus was discriminated, but neither it, nor subsp. gummifer (defined in a broad sense) are monophyletic. CONCLUSIONS: Our study suggests that (1) the morphotypes identified as D. carota subspecies gummifer (as currently broadly circumscribed), all confined to areas near the Atlantic Ocean and the western Mediterranean Sea, have separate origins from sympatric members of other subspecies of D. carota, (2) D. carota subsp. maximus, on two clades with some accessions of subsp. carota, can be distinguished from each other but only with poor morphological support, (3) D. carota subsp. capillifolius, well distinguished morphologically, is an apospecies relative to North African populations of D. carota subsp. carota, (4) the eastern cultivated carrots have origins closer to wild carrots from central Asia than to western cultivated carrots, and (5) large SNP data sets are suitable for species-level phylogenetic studies in Daucus.


Assuntos
Daucus carota/genética , Técnicas de Genotipagem/métodos , Análise de Sequência de DNA/métodos , Daucus carota/anatomia & histologia , Ecótipo , Variação Genética , Genótipo , Funções Verossimilhança , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Especificidade da Espécie
7.
Front Plant Sci ; 7: 231, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26973674

RESUMO

The natural history of epiphytic plant species has been extensively studied. However, little is known about the physiology and genetics of epiphytism. This is due to difficulties associated with growing epiphytic plants and the lack of tools for genomics studies and genetic manipulations. In this study, tubers were generated from 223 accessions of 42 wild potato Solanum species, including the epiphytic species S. morelliforme and its sister species S. clarum. Lyophilized samples were analyzed for 12 minerals using inductively coupled plasma optical emission spectrometry. Mineral levels in tubers of S. morelliforme and S. clarum were among the highest for 10 out of the 12 elements evaluated. These two wild potato relatives are native to southern Mexico and Central America and live as epiphytes or in epiphytic-like conditions. We propose the use of S. morelliforme and S. clarum as model organisms for the study of mineral uptake efficiency. They have a short life cycle, can be propagated vegetatively via tubers or cuttings, and can be easily grown in controlled environments. In addition, genome sequence data are available for potato. Transgenic manipulations and somatic fusions will allow the movement of genes from these epiphytes to cultivated potato.

9.
PLoS One ; 10(4): e0122599, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25923711

RESUMO

Crop wild relatives have a long history of use in potato breeding, particularly for pest and disease resistance, and are expected to be increasingly used in the search for tolerance to biotic and abiotic stresses. Their current and future use in crop improvement depends on their availability in ex situ germplasm collections. As these plants are impacted in the wild by habitat destruction and climate change, actions to ensure their conservation ex situ become ever more urgent. We analyzed the state of ex situ conservation of 73 of the closest wild relatives of potato (Solanum section Petota) with the aim of establishing priorities for further collecting to fill important gaps in germplasm collections. A total of 32 species (43.8%), were assigned high priority for further collecting due to severe gaps in their ex situ collections. Such gaps are most pronounced in the geographic center of diversity of the wild relatives in Peru. A total of 20 and 18 species were assessed as medium and low priority for further collecting, respectively, with only three species determined to be sufficiently represented currently. Priorities for further collecting include: (i) species completely lacking representation in germplasm collections; (ii) other high priority taxa, with geographic emphasis on the center of species diversity; (iii) medium priority species. Such collecting efforts combined with further emphasis on improving ex situ conservation technologies and methods, performing genotypic and phenotypic characterization of wild relative diversity, monitoring wild populations in situ, and making conserved wild relatives and their associated data accessible to the global research community, represent key steps in ensuring the long-term availability of the wild genetic resources of this important crop.


Assuntos
Produtos Agrícolas/fisiologia , Melhoramento Vegetal , Banco de Sementes , Solanum/fisiologia , Mudança Climática , Conservação dos Recursos Naturais , Produtos Agrícolas/genética , Produtos Agrícolas/imunologia , Resistência à Doença , Ecossistema , Genótipo , Peru , Solanum/genética , Solanum/imunologia
10.
Artigo em Espanhol | LILACS-Express | LILACS, LIPECS | ID: biblio-1522383

RESUMO

SolanumL. es uno de los géneros que posee una alta riqueza de especies dentro de la flora peruana y dentro de los Andes tropicales en general. Presentamos una lista revisada de 276 especies de Solanum para el Perú, de estas 253 son nativas, mientras que 23 son introducidas y/o cultivadas. Un total de 74 especies de Solanum (29% de las especies nativas) son endémicas de Perú. Además 58 especies se encuentran solamente en pequeñas poblaciones fuera del Perú, y estas especies están designadas aquí como casi endémicas para destacar el rol importante del Perú en la futura protección de estas especies. El pico de diversidad de especies es observado entre 2500 - 3000 m de elevación, pero la diversidad de especies endémicas es más alta entre 3000 - 3500 m. Cajamarca tiene el más alto número de especies (130 spp.) y de especies endémicas (29 spp.), incluso si se considera el efecto del área. Centros de diversidad de especies endémicas se localizan en las provincias de Cajamarca (Cajamarca), Huaraz y Carhuaz (Ancash), Canta y Huarochirí (Lima). Centros de endemismos secundarios con una alta concentración tanto de especies endémicas y de casi endémicas se encuentran en San Ignacio y Cutervo (Cajamarca), Santiago de Chuco (La Libertad), Oxapampa (Pasco), y Cusco (Cusco): Los actuales patrones de diversidad están altamente correlacionados con la densidad de colecciones, por lo que es necesario una mayor colecta en todas las regiones, especialmente en Arequipa, Ayacucho, Puno, Ancash, Huánuco, Amazonas y Cajamarca, donde se indican altos niveles de diversidad y endemismo de especies, pero de las cuales existen pocas colecciones.


The genus Solanumis among the most species-rich genera both of the Peruvian flora and of the tropical Andes in general. The present revised checklist treats 276 species of SolanumL., of which 253 are native, while 23 are introduced and/or cultivated. A total of 74 Solanumspecies (29% of native species) are endemic to Peru. Additional 58 species occur only in small number of populations outside Peru, and these species are here labelled as near-endemics to highlight the role Peru playes in their future protection. Species diversity is observed to peak between 2500 - 3000 m elevation, but endemic species diversity is highest between 3000 - 3500 m elevation. Cajamarca has the highest number of endemic (29 spp.) and total species (130 spp.), even when considering the effect of area. Centers of endemic species diversity are observed in provinces of Cajamarca(Cajamarca),Huaraz and Carhuaz (Ancash), and Canta and Huarochirí (Lima). Secondary centres of endemism with high concentrations of both endemics and near-endemics are found in San Ignacio and Cutervo (Cajamarca), Santiago de Chuco (La Libertad), Oxapampa (Pasco), and Cusco (Cusco). Current diversity patterns are highly correlated with collection densities, and further collecting is needed across all areas, especially from Arequipa, Ayacucho, Puno, Ancash, Huánuco, Amazonas and Cajamarca, where high levels of species diversity and endemism are indicated but only a few collections of many species are known.

11.
Am J Bot ; 101(11): 2005-16, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25366864

RESUMO

PREMISE OF STUDY: Molecular phylogenetics of genome-scale data sets (phylogenomics) often produces phylogenetic trees with unprecedented resolution. A companion phylogenomics analysis of Daucus using 94 conserved nuclear orthologs supported many of the traditional species but showed unexpected results that require morphological analyses to help interpret them in a practical taxonomic context. METHODS: We evaluated character state distributions, stepwise discriminant analyses, canonical variate analyses, and hierarchical cluster analyses from 40 morphological characters from 81 accessions of 14 taxa of Daucus and eight species in related genera in an experimental plot. KEY RESULTS: Most characters showed tremendous variation with character state overlap across many taxa. Multivariate analyses separated the outgroup taxa easily from the Daucus ingroup. Concordant with molecular analyses, most species form phenetic groups, except the same taxa that are problematical in the molecular results: (1) the subspecies of D. carota, (2) D. sahariensis and D. syrticus, and (3) D. broteri and D. guttatus. CONCLUSIONS: Phenetic analyses, in combination with molecular data, support many Daucus species, but mostly by overlapping ranges of size and meristic variation. The subspecies of D. carota are poorly separated morphologically, are paraphyletic, and all could be recognized at the subspecies rank under D. carota. Daucus sahariensis and D. syrticus are so similar morphologically that they could be placed in synonymy. Combined molecular and morphological data support three species in accessions previously identified as D. broteri and D. guttatus. Molecular and morphological results support the new combination Daucus carota subsp. capillifolius.


Assuntos
Apiaceae/genética , Evolução Molecular , Apiaceae/anatomia & histologia , DNA de Plantas/química , DNA de Plantas/genética , Filogenia
12.
Am J Bot ; 101(10): 1666-85, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25077508

RESUMO

UNLABELLED: • PREMISE OF THE STUDY: We explored the utility of multiple nuclear orthologs for the taxonomic resolution of wild and cultivated carrot, Daucus species.• METHODS: We studied the phylogeny of 92 accessions of 13 species and two subspecies of Daucus and 15 accessions of related genera (107 accessions total) with DNA sequences of 94 nuclear orthologs. Reiterative analyses examined data of both alleles using ambiguity codes or a single allele with the highest coverage, trimmed vs. untrimmed homopolymers; pure exonic vs. pure intronic data; the use of all 94 markers vs. a reduced subset of markers; and analysis of a concatenated data set vs. a coalescent (species tree) approach.• KEY RESULTS: Our maximum parsimony and maximum likelihood trees were highly resolved, with 100% bootstrap support for most of the external and many of the internal clades. They resolved multiple accessions of many different species as monophyletic with strong support, but failed to support other species. The single allele analysis gave slightly better topological resolution; trimming homopolymers failed to increase taxonomic resolution; the exonic data had a smaller proportion of parsimony-informative characters. Similar results demonstrating the same dominant topology can be obtained with many fewer markers. A Bayesian concordance analysis provided an overall similar phylogeny, but the coalescent analysis provided drastic changes in topology to all the above.• CONCLUSIONS: Our research highlights some difficult species groups in Daucus and misidentifications in germplasm collections. It highlights a useful subset of markers and approaches for future studies of dominant topologies in Daucus.


Assuntos
Alelos , Sequência de Bases , DNA de Plantas/análise , Daucus carota/genética , Genoma de Planta , Filogenia , Teorema de Bayes , Classificação , Éxons , Íntrons , Modelos Genéticos , Análise de Sequência de DNA
13.
BMC Genet ; 14: 51, 2013 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-23758607

RESUMO

BACKGROUND: Conserved ortholog set (COS) markers are an important functional genomics resource that has greatly improved orthology detection in Asterid species. A comprehensive list of these markers is available at Sol Genomics Network (http://solgenomics.net/) and many of these have been placed on the genetic maps of a number of solanaceous species. RESULTS: We amplified over 300 COS markers from eight potato accessions involving two diploid landraces of Solanum tuberosum Andigenum group (formerly classified as S. goniocalyx, S. phureja), and a dihaploid clone derived from a modern tetraploid cultivar of S. tuberosum and the wild species S. berthaultii, S. chomatophilum, and S. paucissectum. By BLASTn (Basic Local Alignment Search Tool of the NCBI, National Center for Biotechnology Information) algorithm we mapped the DNA sequences of these markers into the potato genome sequence. Additionally, we mapped a subset of these markers genetically in potato and present a comparison between the physical and genetic locations of these markers in potato and in comparison with the genetic location in tomato. We found that most of the COS markers are single-copy in the reference genome of potato and that the genetic location in tomato and physical location in potato sequence are mostly in agreement. However, we did find some COS markers that are present in multiple copies and those that map in unexpected locations. Sequence comparisons between species show that some of these markers may be paralogs. CONCLUSIONS: The sequence-based physical map becomes helpful in identification of markers for traits of interest thereby reducing the number of markers to be tested for applications like marker assisted selection, diversity, and phylogenetic studies.


Assuntos
Sequência Conservada , Genoma de Planta , Solanum tuberosum/genética , Evolução Molecular , Ligação Genética
14.
Am J Bot ; 100(5): 930-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23594914

RESUMO

PREMISE OF THE STUDY: Analyses of genetic structure and phylogenetic relationships illuminate the origin and domestication of modern crops. Despite being an important worldwide vegetable, the genetic structure and domestication of carrot (Daucus carota) is poorly understood. We provide the first such study using a large data set of molecular markers and accessions that are widely dispersed around the world. • METHODS: Sequencing data from the carrot transcriptome were used to develop 4000 single nucleotide polymorphisms (SNPs). Eighty-four genotypes, including a geographically well-distributed subset of wild and cultivated carrots, were genotyped using the KASPar assay. • KEY RESULTS: Analysis of allelic diversity of SNP data revealed no reduction of genetic diversity in cultivated vs. wild accessions. Structure and phylogenetic analysis indicated a clear separation between wild and cultivated accessions as well as between eastern and western cultivated carrot. Among the wild carrots, those from Central Asia were genetically most similar to cultivated accessions. Furthermore, we found that wild carrots from North America were most closely related to European wild accessions. • CONCLUSIONS: Comparing the genetic diversity of wild and cultivated accessions suggested the absence of a genetic bottleneck during carrot domestication. In conjunction with historical documents, our results suggest an origin of domesticated carrot in Central Asia. Wild carrots from North America were likely introduced as weeds with European colonization. These results provide answers to long-debated questions of carrot evolution and domestication and inform germplasm curators and breeders on genetic substructure of carrot genetic resources.


Assuntos
Agricultura , Daucus carota/genética , Filogenia , Polimorfismo de Nucleotídeo Único , África do Norte , Ásia , DNA de Plantas/genética , Europa (Continente) , Marcadores Genéticos , Pigmentos Biológicos , América do Sul
15.
Appl Plant Sci ; 1(6)2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25202559

RESUMO

PREMISE OF THE STUDY: Taxonomists manage large amounts of specimen data. This is usually initiated in spreadsheets and then converted for publication into locality lists and indices to associate collectors and collector numbers from herbarium sheets to identifications (exsiccatae). This conversion process is mostly done by hand and is time-consuming, cumbersome, and error-prone. • METHODS AND RESULTS: We constructed a tool, 'exsic,' based on the statistical software R. The exsic function is part of the R package 'exsic' and produces specimen citations and exsiccatae conforming to four related formats. • CONCLUSIONS: The tool increases speed, efficiency, and accuracy to convert raw spreadsheet tables to publication-ready content.

16.
Genome ; 55(6): 407-15, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22594521

RESUMO

Wild potato ( Solanum L. sect. Petota Dumort.) species contain diploids (2n = 2x = 24) to hexaploids (2n = 6x = 72). J.G. Hawkes classified all hexaploid Mexican species in series Demissa Bukasov and, according to a classic five-genome hypothesis of M. Matsubayashi in 1991, all members of series Demissa are allopolyploids. We investigated the genome composition of members of Hawkes's series Demissa with genomic in situ hybridization (GISH), using labeled DNA of their putative progenitors having diploid AA, BB, or PP genome species or with DNA of tetraploid species having AABB or AAA(a)A(a) genomes. GISH analyses support S. hougasii Correll as an allopolyploid with one AA component genome and another BB component genome. Our results also indicate that the third genome of S. hougasii is more closely related to P or a P genome-related species. Solanum demissum Lindl., in contrast, has all three chromosome sets related to the basic A genome, similar to the GISH results of polyploid species of series Acaulia Juz. Our results support a more recent taxonomic division of the Mexican hexaploid species into two groups: the allopolyploid Iopetala group containing S. hougasii, and an autopolyploid Acaulia group containing S. demissum with South American species S. acaule Bitter and S. albicans (Ochoa) Ochoa.


Assuntos
Cromossomos de Plantas/genética , DNA de Plantas/genética , Genoma de Planta , Solanum/genética , América Central , Genômica , Hibridização In Situ , Tipagem Molecular , América do Norte , Filogenia , Filogeografia , Ploidias , Solanum/classificação , Especificidade da Espécie
17.
BMC Evol Biol ; 12: 70, 2012 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-22624678

RESUMO

BACKGROUND: Recent genomic studies have drastically altered our knowledge of polyploid evolution. Wild potatoes (Solanum section Petota) are a highly diverse and economically important group of about 100 species widely distributed throughout the Americas. Thirty-six percent of the species in section Petota are polyploid or with diploid and polyploid cytotypes. However, the group is poorly understood at the genomic level and the series is ideal to study polyploid evolution. Two separate studies using the nuclear orthologs GBSSI and nitrate reductase confirmed prior hypotheses of polyploid origins in potato and have shown new origins not proposed before. These studies have been limited, however, by the use of few accessions per polyploid species and by low taxonomic resolution, providing clade-specific, but not species-specific origins within clades. The purpose of the present study is to use six nuclear orthologs, within 54 accessions of 11 polyploid species, 34 accessions of 29 diploid species of section Petota representing their putative progenitors, and two outgroups, to see if phenomena typical of other polyploid groups occur within wild potatoes, to include multiple origins, loss of alleles, or gain of new alleles. RESULTS: Our results increase resolution within clades, giving better ideas of diploid progenitors, and show unexpected complexity of allele sharing within clades. While some species have little diversity among accessions and concur with the GBSSI and nitrate reductase results, such as S. agrimonifolium, S. colombianum, S. hjertingii, and S. moscopanum, the results give much better resolution of species-specific progenitors. Seven other species, however, show variant patterns of allele distributions suggesting multiple origins and allele loss. Complex three-genome origins are supported for S. hougasii, and S. schenckii, and one of the ten accessions of S. stoloniferum. A very unexpected shared presence of alleles occurs within one clade of S. verrucosum from Central America, and S. berthaultii from South America in six polyploid species S. demissum, S. hjertingii, S. hougasii, S. iopetalum, S. schenckii, and S. stoloniferum. CONCLUSIONS: Our results document considerable genomic complexity of some wild potato polyploids. These can be explained by multiple hybrid origins and allele losses that provide a clear biological explanation for the taxonomic complexity in wild potato polyploids. These results are of theoretical and practical benefit to potato breeders, and add to a growing body of evidence showing considerable complexity in polyploid plants in general.


Assuntos
Genoma de Planta , Filogenia , Poliploidia , Solanum tuberosum/genética , Alelos , Evolução Biológica , América Central , DNA de Plantas/genética , Modelos Genéticos , Alinhamento de Sequência , Análise de Sequência de DNA , América do Sul
18.
Am J Bot ; 99(2): 175-85, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22312116

RESUMO

The last several years have seen revolutionary advances in DNA sequencing technologies with the advent of next-generation sequencing (NGS) techniques. NGS methods now allow millions of bases to be sequenced in one round, at a fraction of the cost relative to traditional Sanger sequencing. As costs and capabilities of these technologies continue to improve, we are only beginning to see the possibilities of NGS platforms, which are developing in parallel with online availability of a wide range of biological data sets and scientific publications and allowing us to address a variety of questions not possible before. As techniques and data sets continue to improve and grow, we are rapidly moving to the point where every organism, not just select "model organisms", is open to the power of NGS. This volume presents a brief synopsis of NGS technologies and the development of exemplary applications of such methods in the fields of molecular marker development, hybridization and introgression, transcriptome investigations, phylogenetic and ecological studies, polyploid genetics, and applications for large genebank collections.


Assuntos
Genoma de Planta , Magnoliopsida/genética , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos , Cromossomos de Plantas/genética , Biologia Computacional , DNA de Plantas/genética , Bases de Dados Genéticas , Ecossistema , Hibridização Genética , Magnoliopsida/classificação , Repetições de Microssatélites , Filogenia , Polimorfismo de Nucleotídeo Único , Poliploidia , Sensibilidade e Especificidade
19.
Phytopathology ; 101(2): 205-12, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20839961

RESUMO

The concept that traits should be associated with related organisms and that nearby populations of the same species are likely to be more similar to each other than to populations spread far apart has long been accepted. Consequently, taxonomic relationships and biogeographical data are commonly believed to have the power to predict the distribution of disease resistance genes among plant species. In this study, we test claims of such predictivity in a group of widely distributed wild potato species. There was no clear association between resistance to soft rot and taxonomic relationships. However, we have found some associations between resistance to soft rot and environmental data such as annual precipitation and annual mean temperature. In addition, we have noted that high levels of resistance are mostly found in species with high levels of phenotypic plasticity. The three most resistant species were Solanum paucijugum, S. brevicaule, and S. commersonii.


Assuntos
Meio Ambiente , Interações Hospedeiro-Patógeno , Imunidade Inata/fisiologia , Herança Multifatorial , Pectobacterium carotovorum/patogenicidade , Doenças das Plantas/microbiologia , Solanum/microbiologia , DNA de Plantas , Testes Genéticos , Geografia , Imunidade Inata/genética , Fenótipo , Doenças das Plantas/genética , Solanum/classificação , Solanum/genética , Especificidade da Espécie
20.
Theor Appl Genet ; 121(6): 1187-98, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20734187

RESUMO

Solanum section Petota is taxonomically difficult, partly because of interspecific hybridization at both the diploid and polyploid levels. The taxonomy of cultivated potatoes is particularly controversial. Using DNA sequence data of the waxy gene, we here infer relationships among the four species of cultivated potatoes accepted in the latest taxonomic treatment (S. ajanhuiri, S. curtilobum, S. juzepczukii and S. tuberosum, the latter divided into the Andigenum and Chilotanum Cultivar Groups). The data support prior ideas of hybrid origins of S. ajanhuiri from the S. tuberosum Andigenum Group (2x = S. stenotomum) × S. megistacrolobum; S. juzepczukii from the S. tuberosum Andigenum Group (2x = S. stenotomum) × S. acaule; and S. curtilobum from the S. tuberosum Andigenum Group (4x = S. tuberosum subsp. andigenum) × S. juzepczukii. For the tetraploid cultivar-groups of S. tuberosum, hybrid origins are suggested entirely within much more closely related species, except for two of three examined accessions of the S. tuberosum Chilotanum Group that appear to have hybridized with the wild species S. maglia. Hybrid origins of the crop/weed species S. sucrense are more difficult to support and S. vernei is not supported as a wild species progenitor of the S. tuberosum Andigenum Group.


Assuntos
Quimera , Solanum tuberosum/classificação , Solanum tuberosum/genética , Sequência de Bases , Teorema de Bayes , Produtos Agrícolas/genética , Diploide , Genes de Plantas , Hibridização Genética , Cadeias de Markov , Método de Monte Carlo , Filogenia , Poliploidia , Especificidade da Espécie , Tetraploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...