Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 14: 1073461, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873954

RESUMO

Introduction: Perfluoroalkyl and poly-fluoroalkyl substances (PFASs) are widely used in industrial and consumer products. Due to their environmental persistence and bioaccumulation, PFASs can be found in the blood of humans and wild animals all over the world. Various fluorinated alternatives such as GenX have been developed to replace the long-chain PFASs, but there is limited information about their potential toxicity. Methods:The current study developed blood culture protocols to assess the response to toxic compounds in the marsupial, Monodelphis domestica. After whole-blood culture conditions were tested and optimized, changes in gene expression in response to PFOA and GenX treatment were assessed. Results: More than 10,000 genes were expressed in the blood transcriptomes with and without treatment. Both PFOA and GenX treatment led to significant changes in the whole blood culture transcriptomes. A total of 578 and 148 differentially expressed genes (DEGs) were detected in the PFOA and GenX treatment groups, 32 of which overlapped. Pathway enrichment analysis revealed that DEGs involved in developmental processes were upregulated after PFOA exposure, while those enriched for metabolic and immune system processes were downregulated. GenX exposure upregulated genes associated with fatty acid transport pathways and inflammatory processes, which is consistent with previous studies using rodent models. Discussion: To our knowledge, this study is the first to investigate the effect of PFASs in a marsupial model. The findings provide supportive evidence for significant transcriptomic alterations, suggesting that this mammalian model may provide a mechanism for exploring the potential toxicity of PFOA and GenX.

2.
Sci Rep ; 8(1): 17545, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30510163

RESUMO

Type 2 diabetes (T2D) is a complex and progressive disease requiring polypharmacy to manage hyperglycaemia and cardiovascular risk factors. However, most patients do not achieve combined treatment goals. To address this therapeutic gap, we have developed MEDI4166, a novel glucagon-like peptide-1 (GLP-1) receptor agonist peptide fused to a proprotein convertase subtilisin/kexin type 9 (PCSK9) neutralising antibody that allows for glycaemic control and low-density lipoprotein cholesterol (LDL-C) lowering in a single molecule. The fusion has been engineered to deliver sustained peptide activity in vivo in combination with reduced potency, to manage GLP-1 driven adverse effects at high dose, and a favourable manufacturability profile. MEDI4166 showed robust and sustained LDL-C lowering in cynomolgus monkeys and exhibited the anticipated GLP-1 effects in T2D mouse models. We believe MEDI4166 is a novel molecule combining long acting agonist peptide and neutralising antibody activities to deliver a unique pharmacology profile for the management of T2D.


Assuntos
Anticorpos Monoclonais , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Peptídeo 1 Semelhante ao Glucagon , Hipoglicemiantes , Inibidores de PCSK9 , Proteínas Recombinantes de Fusão , Animais , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/farmacologia , Células CHO , Cricetulus , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Células Hep G2 , Humanos , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/farmacologia , Macaca fascicularis , Masculino , Camundongos , Proteínas Recombinantes de Fusão/farmacocinética , Proteínas Recombinantes de Fusão/farmacologia
3.
Cell Rep ; 25(8): 2121-2131.e5, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30463010

RESUMO

The ultimate goal of protein design is to introduce new biological activity. We propose a computational approach for designing functional antibodies by focusing on functional epitopes, integrating large-scale statistical analysis with multiple structural models. Machine learning is used to analyze these models and predict specific residue-residue contacts. We use this approach to design a functional antibody to counter the proinflammatory effect of the cytokine interleukin-17A (IL-17A). X-ray crystallography confirms that the designed antibody binds the targeted epitope and the interaction is mediated by the designed contacts. Cell-based assays confirm that the antibody is functional. Importantly, this approach does not rely on a high-quality 3D model of the designed complex or even a solved structure of the target. As demonstrated here, this approach can be used to design biologically active antibodies, removing some of the main hurdles in antibody design and in drug discovery.


Assuntos
Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Biologia Computacional/métodos , Epitopos/química , Algoritmos , Sequência de Aminoácidos , Anticorpos/química , Humanos , Fragmentos Fab das Imunoglobulinas/química , Modelos Moleculares
4.
Protein Eng Des Sel ; 30(4): 303-311, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28130326

RESUMO

High levels of protein expression are key to the successful development and manufacture of a therapeutic antibody. Here, we describe two related antibodies, Ab001 and Ab008, where Ab001 shows a markedly lower level of expression relative to Ab008 when stably expressed in Chinese hamster ovary cells. We use single-gene expression vectors and structural analysis to show that the reduced titer is associated with the VL CDR2 of Ab001. We adopted two approaches to improve the expression of Ab001. First, we used mutagenesis to change single amino-acid residues in the Ab001 VL back to the equivalent Ab008 residues but this resulted in limited improvements in expression. In contrast when we used an in silico structure-based design approach to generate a set of five individual single-point variants in a discrete region of the VL, all exhibited significantly improved expression relative to Ab001. The most successful of these, D53N, exhibited a 25-fold increase in stable transfectants relative to Ab001. The functional potency of these VL-modified antibodies was unaffected. We expect that this in silico engineering strategy can be used to improve the expression of other antibodies and proteins.


Assuntos
Substituição de Aminoácidos , Interleucina-13/antagonistas & inibidores , Anticorpos de Cadeia Única , Humanos , Mutagênese , Mutação de Sentido Incorreto , Anticorpos de Cadeia Única/biossíntese , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética
5.
Blood ; 125(22): 3484-90, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25788700

RESUMO

Ticagrelor is a direct-acting reversibly binding P2Y12 antagonist and is widely used as an antiplatelet therapy for the prevention of cardiovascular events in acute coronary syndrome patients. However, antiplatelet therapy can be associated with an increased risk of bleeding. Here, we present data on the identification and the in vitro and in vivo pharmacology of an antigen-binding fragment (Fab) antidote for ticagrelor. The Fab has a 20 pM affinity for ticagrelor, which is 100 times stronger than ticagrelor's affinity for its target, P2Y12. Despite ticagrelor's structural similarities to adenosine, the Fab is highly specific and does not bind to adenosine, adenosine triphosphate, adenosine 5'-diphosphate, or structurally related drugs. The antidote concentration-dependently neutralized the free fraction of ticagrelor and reversed its antiplatelet activity both in vitro in human platelet-rich plasma and in vivo in mice. Lastly, the antidote proved effective in normalizing ticagrelor-dependent bleeding in a mouse model of acute surgery. This specific antidote for ticagrelor may prove valuable as an agent for patients who require emergency procedures.


Assuntos
Adenosina/análogos & derivados , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/farmacologia , Antídotos/química , Antídotos/farmacologia , Adenosina/antagonistas & inibidores , Adenosina/imunologia , Animais , Anticorpos/isolamento & purificação , Anticorpos/metabolismo , Especificidade de Anticorpos , Anticorpos Amplamente Neutralizantes , Células CHO , Cricetinae , Cricetulus , Cristalografia por Raios X , Hemorragia/prevenção & controle , Humanos , Fragmentos Fab das Imunoglobulinas/farmacologia , Camundongos , Modelos Moleculares , Agregação Plaquetária/efeitos dos fármacos , Engenharia de Proteínas , Ticagrelor
6.
Biotechnol Bioeng ; 112(7): 1472-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25619171

RESUMO

Fabs are an important class of antibody fragment as both research reagents and therapeutic agents. There are a plethora of methods described for their recombinant expression and purification. However, these do not address the issue of excessive light chain production that forms light chain dimers nor do they describe a universal purification strategy. Light chain dimer impurities and the absence of a universal Fab purification strategy present persistent challenges for biotechnology applications using Fabs, particularly around the need for bespoke purification strategies. This study describes methods to address light chain dimer formation during Fab expression and identifies a novel CH 1 affinity resin as a simple and efficient one-step purification for correctly assembled Fab.


Assuntos
Expressão Gênica , Fragmentos Fab das Imunoglobulinas/biossíntese , Fragmentos Fab das Imunoglobulinas/isolamento & purificação , Cadeias Leves de Imunoglobulina/biossíntese , Cadeias Leves de Imunoglobulina/isolamento & purificação , Dimerização , Fragmentos Fab das Imunoglobulinas/genética , Cadeias Leves de Imunoglobulina/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...