Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12333, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811641

RESUMO

Antarctic biodiversity is affected by seasonal sea-ice dynamics driving basal resource availability. To (1) determine the role of intraspecific dietary variability in structuring benthic food webs sustaining Antarctic biodiversity, and (2) understand how food webs and the position of topologically central species vary with sea-ice cover, single benthic individuals' diets were studied by isotopic analysis before sea-ice breakup and afterwards. Isotopic trophospecies (or Isotopic Trophic Units) were investigated and food webs reconstructed using Bayesian Mixing Models. As nodes, these webs used either ITUs regardless of their taxonomic membership (ITU-webs) or ITUs assigned to species (population-webs). Both were compared to taxonomic-webs based on taxa and their mean isotopic values. Higher resource availability after sea-ice breakup led to simpler community structure, with lower connectance and linkage density. Intra-population diet variability and compartmentalisation were crucial in determining community structure, showing population-webs to be more complex, stable and robust to biodiversity loss than taxonomic-webs. The core web, representing the minimal community 'skeleton' that expands opportunistically while maintaining web stability with changing resource availability, was also identified. Central nodes included the sea-urchin Sterechinus neumayeri and the bivalve Adamussium colbecki, whose diet is described in unprecedented detail. The core web, compartmentalisation and topologically central nodes represent crucial factors underlying Antarctica's rich benthic food web persistence.


Assuntos
Biodiversidade , Dieta , Cadeia Alimentar , Regiões Antárticas , Animais , Teorema de Bayes , Camada de Gelo
2.
Biology (Basel) ; 12(5)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37237522

RESUMO

In Antarctica, prey availability for the mesopredator Adélie penguin, Pygoscelis adeliae, depends on sea-ice dynamics. By affecting cycles of sea-ice formation and melt, climate change could thus affect penguin diet and recruitment. In the light of climate change, this raises concerns about the fate of this dominant endemic species, which plays a key role in the Antarctic food web. However, few quantitative studies measuring the effects of sea-ice persistence on the diet of penguin chicks have yet been conducted. The purpose of this study was to fill this gap by comparing penguin diets across four penguin colonies in the Ross Sea and evaluating latitudinal and interannual variation linked to different sea-ice persistence. Diet was evaluated by analysing the δ13C and δ15N values of penguin guano, and sea-ice persistence by means of satellite images. Isotopic values indicate that penguins consumed more krill in colonies with longer sea-ice persistence. In these colonies, the δ13C values of chicks were lower and closer to the pelagic chain than those of adults, suggesting that the latter apparently catch prey inshore for self-feeding and offshore for their chicks. The results indicate that sea-ice persistence is among the principal factors that influence the spatiotemporal variability of the penguins' diet.

3.
Biology (Basel) ; 11(12)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36552314

RESUMO

The gall midge Lasioptera donacis, whose larval stage interferes with the reed's leaf development, is a potential candidate agent for the biological control of Arundo donax. Reed infestation is always associated with the presence of a saprophytic fungus, Arthrinium arundinis, which is believed to provide food for the larvae. Larvae also interact with a parasitic nematode, Tripius gyraloura, which can be considered its natural enemy. To deepen our knowledge of the plant-fungus-insect trophic interactions and to understand the effects of the nematode on midge larval feeding behaviour, we applied stable isotope analysis, one of the most effective methods for investigating animal feeding preferences in various contexts. The results showed that on average the fungus accounted for 65% of the diet of the midge larvae, which however consumed the reed and the fungus in variable proportions depending on reed quality (expressed as the C:N ratio). No differences in feeding behaviour were observed between parasitised and non-parasitised midge larvae, indicating that nematodes have no effect in this regard. Due to its trophic habits, L. donacis could be an effective control agent of A. donax and these results need to be considered when implementing biological control measures.

4.
Sci Rep ; 12(1): 2125, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136177

RESUMO

In order to predict the effects of climate change on polar ecosystems, disentangling mechanisms of nutrient transfer in food webs is crucial. We investigated sources of nutrients in tundra lakes, tracing their transfer through the food web and relating the observed patterns to runoff, snow coverage, and the presence of migratory geese in lake catchments. C and N content (elemental and isotopic) of several food web components including Lepidurus arcticus (Notostraca, at the top of the lake food webs) in 18 shallow Arctic lakes was compared. Terrestrial productivity and geese abundance were key biotic factors that interacted with abiotic variables (snow coverage, lake and catchment size) in determining the amount and origin of nutrient inputs, affecting the trophic interactions among aquatic species, food chain length and nutrient flow in Arctic lake food webs. Decreasing snow coverage, increasing abundance and expansion of the geese's range are expected across the Arctic due to climate warming. By relating nutrient inputs and food web structure to snow coverage, vegetation and geese, this study contributes to our mechanistic understanding of the cascade effects of climate change in tundra ecosystems, and may help predict the response of lakes to changes in nutrient inputs at lower latitudes.

5.
Mar Pollut Bull ; 174: 113298, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34995890

RESUMO

Posidonia oceanica is a seagrass endemic to the Mediterranean and it has been widely used as a bioindicator. We studied the layers of a 500-year-old matte using a multiproxy approach (δ13C, δ15N, 14C and C and N concentrations in seagrass debris) in order to evaluate the potential of P. oceanica as a long-term environmental indicator of N pollution and CO2 emissions. From 1581 to 1800, accumulation rate was ca. 0.35 cm year-1, while in the last 100 years it has amounted to ca. 0.51 cm year-1. We observed increasing δ15N values with height in the vertical matte profile, indicating an increase in anthropogenic organic N inputs over time. In contrast, no clear trend in the δ13C values was observed. This study reconstructs the long-term impact of human activities on a seagrass meadow located off the Italian coast, yielding long-term background information that can help managers to implement efficient plans.


Assuntos
Alismatales , Humanos , Mar Mediterrâneo , Nutrientes
6.
Sci Rep ; 9(1): 19331, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852953

RESUMO

A central issue in ecology is understanding how complex and biodiverse food webs persist in the face of disturbance, and which structural properties affect disturbance propagation among species. However, our comprehension of assemblage mechanisms and disturbance propagation in food webs is limited by the multitude of stressors affecting ecosystems, impairing ecosystem management. By analysing directional food web components connecting species along food chains, we show that increasing species richness and constant feeding linkage density promote the establishment of predictable food web structures, in which the proportion of species co-present in one or more food chains is lower than what would be expected by chance. This reduces the intrinsic vulnerability of real food webs to disturbance propagation in comparison to random webs, and suggests that biodiversity conservation efforts should also increase the potential of ecological communities to buffer top-down and bottom-up disturbance in ecosystems. The food web patterns observed here have not been noticed before, and could also be explored in non-natural networks.


Assuntos
Biodiversidade , Cadeia Alimentar , Modelos Teóricos , Análise de Regressão , Especificidade da Espécie
7.
Sci Rep ; 9(1): 12454, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31462668

RESUMO

In the Ross Sea, biodiversity organisation is strongly influenced by sea-ice cover, which is characterised by marked spatio-temporal variations. Expected changes in seasonal sea-ice dynamics will be reflected in food web architecture, providing a unique opportunity to study effects of climate change. Based on individual stable isotope analyses and the high taxonomic resolution of sampled specimens, we described benthic food webs in contrasting conditions of seasonal sea-ice persistence (early vs. late sea-ice break up) in medium-depth waters in Terra Nova Bay (Ross Sea). The architecture of biodiversity was reshaped by the pulsed input of sympagic food sources following sea-ice break up, with food web simplification, decreased intraguild predation, potential disturbance propagation and increased vulnerability to biodiversity loss. Following our approach, it was possible to describe in unprecedented detail the complex structure of biodiverse communities, emphasising the role of sympagic inputs, regulated by sea-ice dynamics, in structuring Antarctic medium-depth benthic food webs.


Assuntos
Organismos Aquáticos/parasitologia , Biodiversidade , Cadeia Alimentar , Gelo , Oceanos e Mares , Regiões Antárticas
8.
Environ Pollut ; 246: 772-781, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30623833

RESUMO

Despite a vast amount of literature has focused on trace element (TE) contamination in Antarctica during the last decades, the assessment of the main pathways driving TE transfer to the biota is still an overlooked issue. This limits the ability to predict how variations in sea-ice dynamics and productivity due to climate change will affect TE allocation in the food web. Here, food web structure of Tethys Bay (Terra Nova Bay, Ross Sea, Antarctica) was first characterised by analysing carbon and nitrogen stable isotopes (δ13C, δ15N) in organic matter sources (sediment and planktonic, benthic and sympagic primary producers) and consumers (zooplankton, benthic invertebrates, fish and birds). Diet and trophic position were also characterised using Bayesian mixing models. Then, relationships between stable isotopes, diet and TEs (Cd, Cr, Co, Cu, Hg, Ni, Pb and V) were assessed in order to evaluate if and how horizontal (organic matter pathways) and vertical (trophic position) food web features influence TE transfer to the biota. Regressions between log[TE] and δ13C revealed that the sympagic pathway drives accumulation of V in primary consumers and Cd and Hg in secondary consumers, and that a coupled benthic/pelagic pathway drives Pb transfer to all consumers. Regressions between log[TE] and δ15N showed that only Hg biomagnifies across trophic levels, while all the others TEs showed a biodilution pattern, consistent with patterns observed in temperate food webs. Although the Cd behavior needs further investigations, the present findings provide new insights about the role of basal sources in the transfer of TEs in polar systems. This is especially important nowadays in light of the forecasted trophic changes potentially resulting from climate change-induced modification of sea-ice dynamics.


Assuntos
Monitoramento Ambiental/métodos , Peixes/metabolismo , Cadeia Alimentar , Invertebrados/metabolismo , Oligoelementos/metabolismo , Poluentes Químicos da Água/metabolismo , Zooplâncton/metabolismo , Animais , Regiões Antárticas , Teorema de Bayes , Baías , Biota
9.
PLoS One ; 13(3): e0194796, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29570741

RESUMO

Climate change is expected to affect resource-consumer interactions underlying stability in polar food webs. Polar benthic organisms have adapted to the marked seasonality characterising their habitats by concentrating foraging and reproductive activity in summer months, when inputs from sympagic and pelagic producers increase. While this enables the persistence of biodiverse food webs, the mechanisms underlying changes in resource use and nutrient transfer are poorly understood. Thus, our understanding of how temporal and spatial variations in the supply of resources may affect food web structure and functioning is limited. By means of C and N isotopic analyses of two key Antarctic benthic consumers (Adamussium colbecki, Bivalvia, and Sterechinus neumayeri, Echinoidea) and Bayesian mixing models, we describe changes in trophic niche and nutrient transfer across trophic levels associated with the long- and short-term diet and body size of specimens sampled in midsummer in both shallow and deep waters. Samplings occurred soon after the sea-ice broke up at Tethys Bay, an area characterised by extreme seasonality in sea-ice coverage and productivity in the Ross Sea. In the long term, the trophic niche was broader and variation between specimens was greater, with intermediate-size specimens generally consuming a higher number of resources than small and large specimens. The coupling of energy channels in the food web was consequently more direct than in the short term. Sediment and benthic algae were more frequently consumed in the long term, before the sea-ice broke up, while consumers specialised on sympagic algae and plankton in the short term. Regardless of the time scale, sympagic algae were more frequently consumed in shallow waters, while plankton was more frequently consumed in deep waters. Our results suggest a strong temporal relationship between resource availability and the trophic niche of benthic consumers in Antarctica. Potential climate-driven changes in the timing and quality of nutrient inputs may have profound implications for the structure of polar food webs and the persistence of their constituent species, which have adapted their trophic niches to a highly predictable schedule of resource inputs.


Assuntos
Mudança Climática , Ecossistema , Animais , Regiões Antárticas , Teorema de Bayes , Bivalves/metabolismo , Tamanho Corporal , Isótopos de Carbono/química , Isótopos de Carbono/metabolismo , Dieta , Cadeia Alimentar , Isótopos de Nitrogênio/química , Isótopos de Nitrogênio/metabolismo , Pectinidae/metabolismo , Ouriços-do-Mar/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...