Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biol ; 18(12): 7521-7, 1998 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9819437

RESUMO

tRNAs encoded on the mitochondrial DNA of Physarum polycephalum and Didymium nigripes require insertional editing for their maturation. Editing consists of the specific insertion of a single cytidine or uridine relative to the mitochondrial DNA sequence encoding the tRNA. Editing sites are at 14 different locations in nine tRNAs. Cytidine insertion sites can be located in any of the four stems of the tRNA cloverleaf and usually create a G. C base pair. Uridine insertions have been identified in the T loop of tRNALys from Didymium and tRNAGlu from Physarum. In both tRNAs, the insertion creates the GUUC sequence, which is converted to GTPsiC (Psi = pseudouridine) in most tRNAs. This type of tRNA editing is different from other, previously described types of tRNA editing and resembles the mRNA and rRNA editing in Physarum and Didymium. Analogous tRNAs in Physarum and Didymium have editing sites at different locations, indicating that editing sites have been lost, gained, or both since the divergence of Physarum and Didymium. Although cDNAs derived from single tRNAs are generally fully edited, cDNAs derived from unprocessed polycistronic tRNA precursors often lack some of the editing site insertions. This enrichment of partially edited sequences in unprocessed tRNAs may indicate that editing is required for tRNA processing or at least that RNA editing occurs as an early event in tRNA synthesis.


Assuntos
Mixomicetos/genética , Physarum/genética , Edição de RNA/genética , RNA de Protozoário/genética , RNA de Transferência/genética , RNA/genética , Animais , Sequência de Bases , Citidina/genética , DNA Complementar/genética , DNA Mitocondrial/genética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Mitocondrial , Alinhamento de Sequência , Uridina/genética
2.
EMBO J ; 13(1): 232-40, 1994 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-8306965

RESUMO

Post-transcriptional insertion, substitution or deletion of nucleotides in RNA (RNA editing) has been observed in RNAs from a number of organisms but always in messenger RNA or transfer RNA. We report here that the 17S rRNA of the mitochondrial ribosome of Physarum polycephalum is edited at 40 sites with single cytidine insertions. The locations of the editing sites are fairly evenly distributed throughout the RNA and do not correspond to any obvious feature of the primary sequence or secondary structure. In addition to these cytidine editing sites are editing sites in which a nucleotide other than cytidine is inserted. At two sites a uridine is inserted and at two sites adenosine residues are inserted. This is the first report of mixed nucleotide insertional editing. These results imply that the editing mechanism in Physarum may be different from those proposed for the kinetoplastid protozoa.


Assuntos
Physarum polycephalum/genética , Edição de RNA , RNA Ribossômico/metabolismo , Animais , Sequência de Bases , DNA Mitocondrial , Escherichia coli/genética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Plantas/genética , RNA Ribossômico/química , Alinhamento de Sequência
3.
Semin Cell Biol ; 4(4): 261-6, 1993 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-7694673

RESUMO

RNA produced from a number of genes on the mitochondrial (mt) DNA of Physarum polycephalum have nucleotides inserted at specific sites in their sequence. These insertions are spaced at approximately 25 nucleotide intervals and create open reading frames in mRNA and functional structure in tRNAs and rRNAs. Although most of the insertions at a site are single cytidines; single uridines and certain dinucleotides containing adenosine and guanosine as well as cytidine and uridine are also occasionally inserted at certain sites. This mixed nucleotide insertional RNA editing is unique among currently characterized editing systems.


Assuntos
Physarum polycephalum/genética , Edição de RNA , RNA/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA , Dados de Sequência Molecular , Physarum polycephalum/enzimologia , Physarum polycephalum/ultraestrutura , RNA Mitocondrial
4.
EMBO J ; 10(9): 2653-9, 1991 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-1714386

RESUMO

The onset of S-phase and M-phase in both Schizosaccharomyces pombe and Saccharomyces cerevisiae requires the function of the cdc2/CDC28 gene product, p34, a serine-threonine protein kinase. A human homolog, p34cdc2, was identified by functional complementation of the S.pombe cdc2 mutation (Lee and Nurse, 1987). Using a human cDNA expression library to search for suppressors of cdc28 mutations in S. cerevisiae, we have identified a second functional p34 homolog, CDK2 cell division kinase). This gene is expressed as a 2.1 kb transcript encoding a polypeptide of 298 amino acids. This protein retains nearly all of the amino acids highly conserved among previously identified p34 homologs from other species, but is considerably divergent from all previous p34cdc2 homologs, approximately 65% identity. This gene encodes the human homolog of the Xenopus Eg1 gene, sharing 89% amino acid identity, and defines a second sub-family of CDC2 homologs. A second chromosomal mutation which arose spontaneously was required to allow complementation of the cdc28-4 mutation by CDK2. This mutation blocked the ability of this strain to mate. These results suggest that the machinery controlling the human cell cycle is more complex than that for fission and budding yeast.


Assuntos
Proteína Quinase CDC2/genética , Quinases relacionadas a CDC2 e CDC28 , Quinases Ciclina-Dependentes , Proteínas Fúngicas/genética , Mutação , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Northern Blotting , Ciclo Celular , Quinase 2 Dependente de Ciclina , DNA Fúngico , Proteínas Fúngicas/isolamento & purificação , Genes Fúngicos , Teste de Complementação Genética , Humanos , Dados de Sequência Molecular , Poli A/análise , Proteínas Quinases/isolamento & purificação , RNA/análise , RNA Mensageiro , Saccharomyces cerevisiae/enzimologia , Homologia de Sequência do Ácido Nucleico , Transcrição Gênica , Xenopus , Proteínas de Xenopus
5.
Proc Natl Acad Sci U S A ; 88(5): 1731-5, 1991 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-1848010

RESUMO

This work describes a multifunctional phage lambda expression vector system, lambda YES, designed to facilitate gene isolation from eukaryotes by complementation of Escherichia coli and Saccharomyces cerevisiae mutations. lambda YES vectors have a selection for cDNA inserts using an oligo adaptor strategy and are capable of expressing genes in both E. coli and S. cerevisiae. They also allow conversion from phage lambda to plasmid clones by using the cre-lox site-specific recombination system, referred to here as automatic subcloning. A simple method has been developed for the conversion of any plasmid into a phage lambda cDNA cloning vector with automatic subcloning capability. cDNA libraries constructed in these vectors were used to isolate genes from humans and Arabidopsis thaliana by complementation of yeast and bacterial mutations, respectively.


Assuntos
Bacteriófago lambda/genética , DNA Viral/genética , Escherichia coli/genética , Genes , Vetores Genéticos , Mutação , Saccharomyces cerevisiae/genética , Antígenos de Diferenciação de Linfócitos T/genética , Sequência de Bases , Antígenos CD28 , Clonagem Molecular/métodos , Biblioteca Gênica , Teste de Complementação Genética , Humanos , Dados de Sequência Molecular , Sondas de Oligonucleotídeos , Plantas/genética , Plasmídeos , Mapeamento por Restrição
6.
Nature ; 349(6308): 434-8, 1991 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-1825131

RESUMO

A corollary of the central dogma of molecular biology is that genetic information passes from DNA to RNA by the continuous synthesis of RNA on a DNA template. The demonstration of RNA editing (the specific insertion, deletion or substitution of residues in RNA to create an RNA with a sequence different from its own template) raised the possibility that in some cases not all of the genetic information for a trait residues in the DNA template. Two different types of RNA editing have been identified in mitochondria: insertional editing represented by the extensive insertion (and occasional deletion) of uridine residues in mitochondrial RNAs of the kinetoplastid protozoa and the substitutional editing represented by the cytidine to uridine substitutions in some plant mitochondria. These editing types have not been shown to be present in the same organism and may have very different mechanisms. RNA editing of both types has been observed in nonmitochondrial systems but is not as extensive and may involve still different mechanisms. Here we report the discovery of extensive insertional RNA editing in mitochondria from an organism other than a kinetoplastid protozoan. The mitochondrial RNA apparently encoding the alpha subunit of ATP synthetase in the acellular slime mould, Physarum polycephalum, is edited at 54 sites by cytidine insertion.


Assuntos
Citidina/metabolismo , DNA Mitocondrial/genética , Physarum/genética , ATPases Translocadoras de Prótons/genética , Processamento Pós-Transcricional do RNA , Sequência de Aminoácidos , Sequência de Bases , Códon , DNA/genética , Dados de Sequência Molecular , RNA Fúngico/genética , Mapeamento por Restrição
7.
Curr Genet ; 17(4): 331-7, 1990 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-2340593

RESUMO

Mitochondrial DNA (mtDNA) has been isolated from four strains of Physarum polycephalum and a restriction site map has been determined using nine restriction enzymes. The restriction site maps of the four strains are similar but each strain is distinguished by insertions, deletions and restriction enzyme site polymorphisms. The sum of the restriction fragments gives mitochondrial genome sizes which vary from about 56 kb to 62 kb. In all four strains the composite map of the restriction enzyme sites for the mtDNA is circular. Knowledge of the restriction enzyme map has enabled cloning of mtDNA fragments representing the entire mtDNA of strain M3. The cloned fragments have been used to create a transcription map of the mtDNA.


Assuntos
DNA Mitocondrial/genética , Physarum/genética , Transcrição Gênica , Northern Blotting , Fracionamento Celular , Clonagem Molecular , DNA Fúngico/genética , Mapeamento por Restrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...