Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cem Concr Compos ; 87: 63-72, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29503512

RESUMO

There are conflicting views in the literature concerning the optimum moisture state for an existing substrate prior to the application of a repair material. Both saturated-surface-dry (SSD) and dry substrates have been found to be preferable in a variety of studies. One confounding factor is that some studies evaluate bonding of the repair material to the substrate via pull-off (direct tension) testing, while others have employed some form of shear specimens as their preferred testing configuration. Available evidence suggests that dry substrate specimens usually perform equivalently or better in shear testing, while SSD ones generally exhibit higher bond strengths when a pull-off test is performed, although exceptions to these trends have been observed. This paper applies a variety of microstructural characterization tools to investigate the interfacial microstructure that develops when a fresh repair material is applied to either a dry or SSD substrate. Simultaneous neutron and X-ray radiography are employed to observe the dynamic microstructural rearrangements that occur at this interface during the first 4 h of curing. Based on the differences in water movement and densification (particle compaction) that occur for the dry and SSD specimens, respectively, a hypothesis is formulated as to why different bond tests may favor one moisture state over the other, also dependent on their surface roughness. It is suggested that the compaction of particles at a dry substrate surface may increase the frictional resistance when tested under slant shear loading, but contribute relatively little to the bonding when the interface is submitted to pull-off forces. For maximizing bond performance, the fluidity of the repair material and the roughness and moisture state of the substrate must all be given adequate consideration.

2.
ACI Mater J ; 114(1): 149-159, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28626299

RESUMO

Some concrete pavements in the US have recently exhibited premature joint deterioration. It is hypothesized that one component of this damage can be attributed to a reaction that occurs when salt-laden water is absorbed in the concrete and reacts with the matrix. This study examines the absorption of CaCl2 solution in mortar via neutron imaging. Mortar specimens were prepared with water to cement ratios, (w/c), of 0.36, 0.42 and 0.50 by mass and exposed to chloride solutions with concentrations ranging from 0 % to 29.8 % by mass. Depth of fluid penetration and moisture content along the specimen length were determined for 96 h after exposure. At high salt concentration (29.8 %), the sorption rate decreased by over 80 % in all samples. Along with changes in surface tension and viscosity, CaCl2 reacts with the cement paste to produce products (Friedel's salt, Kuzel's salt, or calcium oxychloride) that block pores and reduce absorption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...