Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 1(3)2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20824104

RESUMO

The type III secretion system (T3SS) is an interspecies protein transport machine that plays a major role in interactions of Gram-negative bacteria with animals and plants by delivering bacterial effector proteins into host cells. T3SSs span both membranes of Gram-negative bacteria by forming a structure of connected oligomeric rings termed the needle complex (NC). Here, the localization of subunits in the Salmonella enterica serovar Typhimurium T3SS NC were probed via mass spectrometry-assisted identification of chemical cross-links in intact NC preparations. Cross-links between amino acids near the amino terminus of the outer membrane ring component InvG and the carboxyl terminus of the inner membrane ring component PrgH and between the two inner membrane components PrgH and PrgK allowed for spatial localization of the three ring components within the electron density map structures of NCs. Mutational and biochemical analysis demonstrated that the amino terminus of InvG and the carboxyl terminus of PrgH play a critical role in the assembly and function of the T3SS apparatus. Analysis of an InvG mutant indicates that the structure of the InvG oligomer can affect the switching of the T3SS substrate to translocon and effector components. This study provides insights into how structural organization of needle complex base components promotes T3SS assembly and function.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Salmonella typhimurium/metabolismo , Proteínas de Bactérias/genética , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Salmonella typhimurium/química , Salmonella typhimurium/genética
2.
Nat Struct Mol Biol ; 17(5): 582-9, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20400947

RESUMO

Teichoic acid polymers are composed of polyol-phosphate units and form a major component of Gram-positive bacterial cell walls. These anionic compounds perform a multitude of important roles in bacteria and are synthesized by monotopic membrane proteins of the TagF polymerase family. We have determined the structure of Staphylococcus epidermidis TagF to 2.7-A resolution from a construct that includes both the membrane-targeting region and the glycerol-phosphate polymerase domains. TagF possesses a helical region for interaction with the lipid bilayer, placing the active site at a suitable distance for access to the membrane-bound substrate. Characterization of active-site residue variants and analysis of a CDP-glycerol substrate complex suggest a mechanism for polymer synthesis. With the importance of teichoic acid in Gram-positive physiology, this elucidation of the molecular details of TagF function provides a critical new target in the development of novel anti-infectives.


Assuntos
Proteínas de Bactérias/química , Staphylococcus epidermidis/enzimologia , Ácidos Teicoicos/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/química , Motivos de Aminoácidos , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Açúcares de Nucleosídeo Difosfato/química , Açúcares de Nucleosídeo Difosfato/metabolismo , Conformação Proteica , Ácidos Teicoicos/química , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
3.
J Biol Chem ; 285(25): 19679-87, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20410297

RESUMO

Nascent polypeptide-associated complex (NAC) was identified in eukaryotes as the first cytosolic factor that contacts the nascent polypeptide chain emerging from the ribosome. NAC is present as a homodimer in archaea and as a highly conserved heterodimer in eukaryotes. Mutations in NAC cause severe embryonically lethal phenotypes in mice, Drosophila melanogaster, and Caenorhabditis elegans. In the yeast Saccharomyces cerevisiae NAC is quantitatively associated with ribosomes. Here we show that NAC contacts several ribosomal proteins. The N terminus of betaNAC, however, specifically contacts near the tunnel exit ribosomal protein Rpl31, which is unique to eukaryotes and archaea. Moreover, the first 23 amino acids of betaNAC are sufficient to direct an otherwise non-associated protein to the ribosome. In contrast, alphaNAC (Egd2p) contacts Rpl17, the direct neighbor of Rpl31 at the ribosomal tunnel exit site. Rpl31 was also recently identified as a contact site for the SRP receptor and the ribosome-associated complex. Furthermore, in Escherichia coli peptide deformylase (PDF) interacts with the corresponding surface area on the eubacterial ribosome. In addition to the previously identified universal adapter site represented by Rpl25/Rpl35, we therefore refer to Rpl31/Rpl17 as a novel universal docking site for ribosome-associated factors on the eukaryotic ribosome.


Assuntos
Peptídeos/química , Ribossomos/química , Aminoácidos/química , Animais , Chaperoninas/química , Reagentes de Ligações Cruzadas/química , Escherichia coli/metabolismo , Humanos , Camundongos , Mutação , Fenótipo , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Proteínas Ribossômicas/química
4.
J Biol Chem ; 285(12): 8801-7, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20053990

RESUMO

We have used site-directed mutagenesis, EPR spectroscopy, redox potentiometry, and protein crystallography to monitor assembly of the FS0 [4Fe-4S] cluster and molybdo-bis(pyranopterin guanine dinucleotide) cofactor (Mo-bisPGD) of the Escherichia coli nitrate reductase A (NarGHI) catalytic subunit (NarG). Cys and Ser mutants of NarG-His(49) both lack catalytic activity, with only the former assembling FS0 and Mo-bisPGD. Importantly, both prosthetic groups are absent in the NarG-H49S mutant. EPR spectroscopy of the Cys mutant reveals that the E(m) value of the FS0 cluster is decreased by at least 500 mV, preventing its participation in electron transfer to the Mo-bisPGD cofactor. To demonstrate that decreasing the FS0 cluster E(m) results in decreased enzyme activity, we mutated a critical Arg residue (NarG-Arg(94)) in the vicinity of FS0 to a Ser residue. In this case, the E(m) of FS0 is decreased by 115 mV, with a concomitant decrease in enzyme turnover to approximately 30% of the wild type. Analysis of the structure of the NarG-H49S mutant reveals two important aspects of NarGHI maturation: (i) apomolybdo-NarGHI is able to bind GDP moieties at their respective P and Q sites in the absence of the Mo-bisPGD cofactor, and (ii) a critical segment of residues in NarG, (49)HGVNCTG(55), must be correctly positioned to ensure holoenzyme maturation.


Assuntos
Escherichia coli/enzimologia , Nitrato Redutases/química , Catálise , Membrana Celular/metabolismo , Cristalografia por Raios X/métodos , Cisteína/química , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Proteínas Ferro-Enxofre/química , Molibdênio/química , Mutagênese Sítio-Dirigida , Mutação , Oxigênio/química , Serina/química
5.
Nat Struct Mol Biol ; 16(5): 468-76, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19396170

RESUMO

The type III secretion system (T3SS) is a macromolecular 'injectisome' that allows bacterial pathogens to transport virulence proteins into the eukaryotic host cell. This macromolecular complex is composed of connected ring-like structures that span both bacterial membranes. The crystal structures of the periplasmic domain of the outer membrane secretin EscC and the inner membrane protein PrgH reveal the conservation of a modular fold among the three proteins that form the outer membrane and inner membrane rings of the T3SS. This leads to the hypothesis that this conserved fold provides a common ring-building motif that allows for the assembly of the variably sized outer membrane and inner membrane rings characteristic of the T3SS. Using an integrated structural and experimental approach, we generated ring models for the periplasmic domain of EscC and placed them in the context of the assembled T3SS, providing evidence for direct interaction between the outer membrane and inner membrane ring components and an unprecedented span of the outer membrane secretin.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência Conservada , Periplasma/metabolismo , Salmonella typhimurium/patogenicidade , Fatores de Virulência/química , Fatores de Virulência/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/ultraestrutura , Cristalografia por Raios X , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Secretina/química , Secretina/metabolismo , Relação Estrutura-Atividade
6.
Curr Opin Struct Biol ; 18(2): 258-66, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18258424

RESUMO

The Type III secretion system is a bacterial 'injectisome' which allows Gram-negative bacteria to shuttle virulence proteins directly into the host cells they infect. This macromolecular assembly consists of more than 20 different proteins put together to collectively span three biological membranes. The recent T3SS crystal structures of the major oligomeric inner membrane ring, the helical needle filament, needle tip protein, the associated ATPase, and outer membrane pilotin together with electron microscopy reconstructions have dramatically furthered our understanding of how this protein translocator functions. The crucial details that describe how these proteins assemble into this oligomeric complex will need a hybrid of structural methodologies including EM, crystallography, and NMR to clarify the intra- and inter-molecular interactions between different structural components of the apparatus.


Assuntos
Bactérias/metabolismo , Bactérias/patogenicidade , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Espaço Extracelular/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Fatores de Virulência/metabolismo
7.
J Biol Chem ; 280(51): 42423-32, 2005 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-16257976

RESUMO

The transcription factor RovA of Yersinia pseudotuberculosis and analogous proteins in other Enterobacteriaceae activate the expression of virulence genes that play a crucial role in stress adaptation and pathogenesis. In this study, we demonstrate that the RovA protein forms dimers independent of DNA binding, stimulates RNA polymerase, most likely via its C-terminal domain, and counteracts transcriptional repression by the histone-like protein H-NS. As the molecular function of the RovA family is largely uncharacterized, random mutagenesis and terminal deletions were used to identify functionally important domains. Our analysis showed that a winged-helix motif in the center of the molecule is essential and directly involved in DNA binding. Terminal deletions and amino acid changes within both termini also abrogate RovA activation and DNA-binding functions, most likely due to their implication in dimer formation. Finally, we show that the last four amino acids of RovA are crucial for activation of gene transcription. Successive deletions of these residues result in a continuous loss of RovA activity. Their removal reduced the capacity of RovA to activate RNA polymerase and abolished transcription of RovA-activated promoters in the presence of H-NS, although dimerization and DNA binding functions were retained. Our structural model implies that the final amino acids of RovA play a role in protein-protein interactions, adjusting RovA activity.


Assuntos
Proteínas de Bactérias/fisiologia , Fatores de Transcrição/fisiologia , Ativação Transcricional/fisiologia , Yersinia pseudotuberculosis/patogenicidade , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Cromatografia em Gel , Primers do DNA , RNA Polimerases Dirigidas por DNA/metabolismo , Mutagênese Sítio-Dirigida , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência/fisiologia , Yersinia pseudotuberculosis/genética
8.
J Biol Chem ; 280(16): 15849-54, 2005 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-15665334

RESUMO

Nascent polypeptide-associated complex (NAC) was identified in eukaryotes as the first cytosolic factor that contacts the nascent polypeptide chain emerging from the ribosome. NAC is highly conserved from yeast to humans. Mutations in NAC cause severe embryonically lethal phenotypes in mice, Drosophila, and Caenorhabditis elegans. NAC was suggested to protect the nascent chain from inappropriate early interactions with cytosolic factors. Eukaryotic NAC is a heterodimer with two subunits sharing substantial homology with each other. All sequenced archaebacterial genomes exhibit only one gene homologous to the NAC subunits. Here we present the first archaebacterial NAC homolog. It forms a homodimer, and as eukaryotic NAC it is associated with ribosomes and contacts the emerging nascent chain on the ribosome. We present the first crystal structure of a NAC protein revealing two structural features: (i) a novel unique protein fold that mediates dimerization of the complex, and (ii) a ubiquitin-associated domain that suggests a yet unidentified role for NAC in the cellular protein quality control system via the ubiquitination pathway. Based on the presented structure we propose a model for the eukaryotic heterodimeric NAC domain.


Assuntos
Methanobacteriaceae/metabolismo , Transativadores/química , Ubiquitina/metabolismo , Cristalografia por Raios X , Chaperonas Moleculares , Estrutura Terciária de Proteína , Ribossomos/metabolismo , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...