Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mycologia ; 115(3): 299-316, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37105719

RESUMO

Bryoria (Parmeliaceae, Ascomycota) is one of the dominant genera of hair lichens in western North America and is characteristic of high-elevation conifer forest ecosystems. In areas where Bryoria is abundant, it is common to find thalli in which the thalline filaments become conglutinated, forming brittle dead zones. After sampling Bryoria thalli across western Canada and the northwestern United States at different times of the year, we found that this dieback phenomenon is associated with the winter growth of a mold-forming basidiomycete. We report that this fungus belongs to Athelia (Atheliaceae, Basidiomycota), a genus known to contain lichen pathogens, most notably A. arachnoidea. By sequencing a combination of genetic markers-nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS), partial nuc 28S rDNA (28S), and partial translation elongation factor 1-α (TEF1)-paired with morphometric analyses, we reveal the involvement of at least three additional lineages of lichen-associated Athelia and describe one as a new species, A. abscondita. Athelia abscondita is morphologically distinguished from other Athelia species by its basidia and basidiospores, was found to frequently infect members of Bryoria sect. Implexae, and was occasionally on other foliose and fruticose species within Parmeliaceae.


Assuntos
Ascomicetos , Basidiomycota , Líquens , Parmeliaceae , Ecossistema , DNA Espaçador Ribossômico/genética , Filogenia , Parmeliaceae/genética , DNA Ribossômico/genética , Líquens/microbiologia , América do Norte
2.
Curr Biol ; 32(23): 5209-5218.e5, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36423639

RESUMO

Ascomycota account for about two-thirds of named fungal species.1 Over 98% of known Ascomycota belong to the Pezizomycotina, including many economically important species as well as diverse pathogens, decomposers, and mutualistic symbionts.2 Our understanding of Pezizomycotina evolution has until now been based on sampling traditionally well-defined taxonomic classes.3,4,5 However, considerable diversity exists in undersampled and uncultured, putatively early-diverging lineages, and the effect of these on evolutionary models has seldom been tested. We obtained genomes from 30 putative early-diverging lineages not included in recent phylogenomic analyses and analyzed these together with 451 genomes covering all available ascomycete genera. We show that 22 of these lineages, collectively representing over 600 species, trace back to a single origin that diverged from the common ancestor of Eurotiomycetes and Lecanoromycetes over 300 million years BP. The new clade, which we recognize as a more broadly defined Lichinomycetes, includes lichen and insect symbionts, endophytes, and putative mycorrhizae and encompasses a range of morphologies so disparate that they have recently been placed in six different taxonomic classes. To test for shared hidden features within this group, we analyzed genome content and compared gene repertoires to related groups in Ascomycota. Regardless of their lifestyle, Lichinomycetes have smaller genomes than most filamentous Ascomycota, with reduced arsenals of carbohydrate-degrading enzymes and secondary metabolite gene clusters. Our expanded genome sample resolves the relationships of numerous "orphan" ascomycetes and establishes the independent evolutionary origins of multiple mutualistic lifestyles within a single, morphologically hyperdiverse clade of fungi.

3.
Nat Commun ; 13(1): 2634, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551185

RESUMO

Lichen symbioses are thought to be stabilized by the transfer of fixed carbon from a photosynthesizing symbiont to a fungus. In other fungal symbioses, carbohydrate subsidies correlate with reductions in plant cell wall-degrading enzymes, but whether this is true of lichen fungal symbionts (LFSs) is unknown. Here, we predict genes encoding carbohydrate-active enzymes (CAZymes) and sugar transporters in 46 genomes from the Lecanoromycetes, the largest extant clade of LFSs. All LFSs possess a robust CAZyme arsenal including enzymes acting on cellulose and hemicellulose, confirmed by experimental assays. However, the number of genes and predicted functions of CAZymes vary widely, with some fungal symbionts possessing arsenals on par with well-known saprotrophic fungi. These results suggest that stable fungal association with a phototroph does not in itself result in fungal CAZyme loss, and lends support to long-standing hypotheses that some lichens may augment fixed CO2 with carbon from external sources.


Assuntos
Ascomicetos , Líquens , Ascomicetos/metabolismo , Metabolismo dos Carboidratos , Carbono , Celulose/metabolismo
4.
Science ; 376(6590): 256-257, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35324256
5.
New Phytol ; 234(5): 1566-1582, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35302240

RESUMO

Lichens are the symbiotic outcomes of open, interspecies relationships, central to which are a fungus and a phototroph, typically an alga and/or cyanobacterium. The evolutionary processes that led to the global success of lichens are poorly understood. In this review, we explore the goods and services exchange between fungus and phototroph and how this propelled the success of both symbiont and symbiosis. Lichen fungal symbionts count among the only filamentous fungi that expose most of their mycelium to an aerial environment. Phototrophs export carbohydrates to the fungus, which converts them to specific polyols. Experimental evidence suggests that polyols are not only growth and respiratory substrates but also play a role in anhydrobiosis, the capacity to survive desiccation. We propose that this dual functionality is pivotal to the evolution of fungal symbionts, enabling persistence in environments otherwise hostile to fungi while simultaneously imposing costs on growth. Phototrophs, in turn, benefit from fungal protection from herbivory and light stress, while appearing to exert leverage over fungal sex and morphogenesis. Combined with the recently recognized habit of symbionts to occur in multiple symbioses, this creates the conditions for a multiplayer marketplace of rewards and penalties that could drive symbiont selection and lichen diversification.


Assuntos
Cianobactérias , Líquens , Biologia , Fungos , Líquens/microbiologia , Filogenia , Simbiose
6.
Mol Ecol ; 30(17): 4155-4159, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34232528

RESUMO

Lichen fungi live in a symbiotic association with unicellular phototrophs and most have no known aposymbiotic stage. A recent study in Molecular Ecology postulated that some of them have lost mitochondrial oxidative phosphorylation and rely on their algal partners for ATP. This claim originated from an apparent lack of ATP9, a gene encoding one subunit of ATP synthase, from a few mitochondrial genomes. Here, we show that while these fungi indeed have lost the mitochondrial ATP9, each retain a nuclear copy of this gene. Our analysis reaffirms that lichen fungi produce their own ATP.


Assuntos
Genoma Mitocondrial , Líquens , Trifosfato de Adenosina , Fungos , Líquens/genética , Simbiose/genética
8.
Fungal Biol ; 125(7): 495-504, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34140146

RESUMO

The lichen, to which the name Lecidea lichenicola is found to have been misapplied, was first described from England and is an extreme specialist of chalk pebbles. It has long been known that it is not closely related to Lecidea in the strict sense, but its true evolutionary relationships have been unknown. Here we use metagenome-assembled genome data to place this fungus in a six-locus phylogeny of Ascomycota, and find strong support for its placement in the class Lichinomycetes. Multiple gene trees using existing data from Lichinomycetes support its further placement within the family Lichinaceae. Based on a revision of types and original descriptions, we conclude that the earliest name for this species is Lecidea obsoleta (syn. Thrombium cretaceum). We neotypify that name by a modern collection and accommodate it in the new genus Watsoniomyces. Type and other original material of L. lichenicola (syn. Discocera lichenicola) was re-examined and found not to be on chalk and to represent a different lichen, Trapelia glebulosa. Watsoniomyces is the first described member of Lichinomycetes with an endolithic thallus.


Assuntos
Ascomicetos , Carbonato de Cálcio , Genoma Fúngico , Ascomicetos/classificação , Ascomicetos/genética , Genoma Fúngico/genética , Filogenia , Especificidade da Espécie , Reino Unido
9.
Genome Biol Evol ; 13(4)2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33693712

RESUMO

Basidiomycete yeasts have recently been reported as stably associated secondary fungal symbionts of many lichens, but their role in the symbiosis remains unknown. Attempts to sequence their genomes have been hampered both by the inability to culture them and their low abundance in the lichen thallus alongside two dominant eukaryotes (an ascomycete fungus and chlorophyte alga). Using the lichen Alectoria sarmentosa, we selectively dissolved the cortex layer in which secondary fungal symbionts are embedded to enrich yeast cell abundance and sequenced DNA from the resulting slurries as well as bulk lichen thallus. In addition to yielding a near-complete genome of the filamentous ascomycete using both methods, metagenomes from cortex slurries yielded a 36- to 84-fold increase in coverage and near-complete genomes for two basidiomycete species, members of the classes Cystobasidiomycetes and Tremellomycetes. The ascomycete possesses the largest gene repertoire of the three. It is enriched in proteases often associated with pathogenicity and harbors the majority of predicted secondary metabolite clusters. The basidiomycete genomes possess ∼35% fewer predicted genes than the ascomycete and have reduced secretomes even compared with close relatives, while exhibiting signs of nutrient limitation and scavenging. Furthermore, both basidiomycetes are enriched in genes coding for enzymes producing secreted acidic polysaccharides, representing a potential contribution to the shared extracellular matrix. All three fungi retain genes involved in dimorphic switching, despite the ascomycete not being known to possess a yeast stage. The basidiomycete genomes are an important new resource for exploration of lifestyle and function in fungal-fungal interactions in lichen symbioses.


Assuntos
Ascomicetos/genética , Basidiomycota/genética , Genoma Fúngico , Líquens/microbiologia , Ascomicetos/química , Ascomicetos/enzimologia , Ascomicetos/metabolismo , Basidiomycota/química , Basidiomycota/metabolismo , Parede Celular/química , Polissacarídeos Fúngicos/metabolismo , Metagenoma , Metabolismo Secundário/genética , Secretoma , Simbiose
10.
Can J Microbiol ; 67(1): 13-22, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32717148

RESUMO

Fungi critically impact the health and function of global ecosystems and economies. In Canada, fungal researchers often work within silos defined by subdiscipline and institutional type, complicating the collaborations necessary to understand the impacts fungi have on the environment, economy, and plant and animal health. Here, we announce the establishment of the Canadian Fungal Research Network (CanFunNet, https://fungalresearch.ca), whose mission is to strengthen and promote fungal research in Canada by facilitating dialogue among scientists. We summarize the challenges and opportunities for Canadian fungal research that were discussed at CanFunNet's inaugural meeting in 2019, and identify 4 priorities for our community: (i) increasing collaboration among scientists, (ii) studying diversity in the context of ecological disturbance, (iii) preserving culture collections in the absence of sustained funding, and (iv) leveraging diverse expertise to attract trainees. We have gathered additional information to support our recommendations, including a survey identifying underrepresentation of fungal-related courses at Canadian universities, a list of Canadian fungaria and culture collections, and a case study of a human fungal pathogen outbreak. We anticipate that these discussions will help prioritize fungal research in Canada, and we welcome all researchers to join this nationwide effort to enhance knowledge dissemination and funding advocacy.


Assuntos
Fungos , Micologia/organização & administração , Pesquisa/organização & administração , Animais , Canadá , Congressos como Assunto , Ecossistema , Humanos , Micologia/economia , Micologia/educação , Pesquisa/economia
11.
Front Fungal Biol ; 2: 656386, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37744149

RESUMO

The study of the reproductive biology of lichen fungal symbionts has been traditionally challenging due to their complex lifestyles. Against the common belief of haploidy, a recent genomic study found a triploid-like signal in Letharia. Here, we infer the genome organization and reproduction in Letharia by analyzing genomic data from a pure culture and from thalli, and performing a PCR survey of the MAT locus in natural populations. We found that the read count variation in the four Letharia specimens, including the pure culture derived from a single sexual spore of L. lupina, is consistent with haploidy. By contrast, the L. lupina read counts from a thallus' metagenome are triploid-like. Characterization of the mating-type locus revealed a conserved heterothallic configuration across the genus, along with auxiliary genes that we identified. We found that the mating-type distributions are balanced in North America for L. vulpina and L. lupina, suggesting widespread sexual reproduction, but highly skewed in Europe for L. vulpina, consistent with predominant asexuality. Taken together, we propose that Letharia fungi are heterothallic and typically haploid, and provide evidence that triploid-like individuals are hybrids between L. lupina and an unknown Letharia lineage, reconciling classic systematic and genetic studies with recent genomic observations.

12.
Lichenologist (Lond) ; 52(2): 61-181, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32788812

RESUMO

Lichens are widely acknowledged to be a key component of high latitude ecosystems. However, the time investment needed for full inventories and the lack of taxonomic identification resources for crustose lichen and lichenicolous fungal diversity have hampered efforts to fully gauge the depth of species richness in these ecosystems. Using a combination of classical field inventory and extensive deployment of chemical and molecular analysis, we assessed the diversity of lichens and associated fungi in Glacier Bay National Park, Alaska (USA), a mixed landscape of coastal boreal rainforest and early successional low elevation habitats deglaciated after the Little Ice Age. We collected nearly 5000 specimens and found a total of 947 taxa, including 831 taxa of lichen-forming and 96 taxa of lichenicolous fungi together with 20 taxa of saprotrophic fungi typically included in lichen studies. A total of 98 species (10.3% of those detected) could not be assigned to known species and of those, two genera and 27 species are described here as new to science: Atrophysma cyanomelanos gen. et sp. nov., Bacidina circumpulla, Biatora marmorea, Carneothele sphagnicola gen. et sp. nov., Cirrenalia lichenicola, Corticifraga nephromatis, Fuscidea muskeg, Fuscopannaria dillmaniae, Halecania athallina, Hydropunctaria alaskana, Lambiella aliphatica, Lecania hydrophobica, Lecanora viridipruinosa, Lecidea griseomarginata, L. streveleri, Miriquidica gyrizans, Niesslia peltigerae, Ochrolechia cooperi, Placynthium glaciale, Porpidia seakensis, Rhizocarpon haidense, Sagiolechia phaeospora, Sclerococcum fissurinae, Spilonema maritimum, Thelocarpon immersum, Toensbergia blastidiata and Xenonectriella nephromatis. An additional 71 'known unknown' species are cursorily described. Four new combinations are made: Lepra subvelata (G. K. Merr.) T. Sprib., Ochrolechia minuta (Degel.) T. Sprib., Steineropsis laceratula (Hue) T. Sprib. & Ekman and Toensbergia geminipara (Th. Fr.) T. Sprib. & Resl. Thirty-eight taxa are new to North America and 93 additional taxa new to Alaska. We use four to eight DNA loci to validate the placement of ten of the new species in the orders Baeomycetales, Ostropales, Lecanorales, Peltigerales, Pertusariales and the broader class Lecanoromycetes with maximum likelihood analyses. We present a total of 280 new fungal DNA sequences. The lichen inventory from Glacier Bay National Park represents the second largest number of lichens and associated fungi documented from an area of comparable size and the largest to date in North America. Coming from almost 60°N, these results again underline the potential for high lichen diversity in high latitude ecosystems.

13.
FEMS Microbiol Lett ; 367(5)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32037451

RESUMO

Stable, long-term interactions between fungi and algae or cyanobacteria, collectively known as lichens, have repeatedly evolved complex architectures with little resemblance to their component parts. Lacking any central scaffold, the shapes they assume are casts of secreted polymers that cement cells into place, determine the angle of phototropic exposure and regulate water relations. A growing body of evidence suggests that many lichen extracellular polymer matrices harbor unicellular, non-photosynthesizing organisms (UNPOs) not traditionally recognized as lichen symbionts. Understanding organismal input and uptake in this layer is key to interpreting the role UNPOs play in lichen biology. Here, we review both polysaccharide composition determined from whole, pulverized lichens and UNPOs reported from lichens to date. Most reported polysaccharides are thought to be structural cell wall components. The composition of the extracellular matrix is not definitively known. Several lines of evidence suggest some acidic polysaccharides have evaded detection in routine analysis of neutral sugars and may be involved in the extracellular matrix. UNPOs reported from lichens include diverse bacteria and yeasts for which secreted polysaccharides play important biological roles. We conclude by proposing testable hypotheses on the role that symbiont give-and-take in this layer could play in determining or modifying lichen symbiotic outcomes.


Assuntos
Biofilmes/crescimento & desenvolvimento , Líquens/fisiologia , Polissacarídeos/química , Simbiose , Cianobactérias/química , Cianobactérias/fisiologia , Fungos/química , Fungos/fisiologia , Filogenia , Ácidos Urônicos
15.
Curr Biol ; 29(3): 476-483.e5, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30661799

RESUMO

Since the late 1800s, mycologists have been detecting fungi above and beyond the assumed single fungus in lichen thalli [1-6]. Over the last century, these fungi have been accorded roles ranging from commensalists to pathogens. Recently, Cyphobasidiales yeasts were shown to be ubiquitous in the cortex layer of many macrolichens [7], but for most species, little is known of their cellular distribution and constancy beyond visible fruiting structures. Here, we demonstrate the occurrence of an additional and distantly related basidiomycete, Tremella, in 95% of studied thalli in a global sample of one of the most intensively studied groups of lichens, the wolf lichens (genus Letharia). Tremella species are reported from a wide range of lichen genera [8], but until now, their biology was deduced from fruiting bodies (basidiomata) formed on lichen thalli. Based on this, they have been thought to be uncommon to rare, to occur exclusively in a hyphal form, and to be parasitic on the dominant fungal partner [9, 10]. We show that, in wolf lichens, Tremella occurs as yeast cells also in thalli that lack basidiomata and infer that this is its dominant stage in nature. We further show that the hyphal stage, when present in Letharia, is in close contact with algal cells, challenging the assumption that lichen-associated Tremella species are uniformly mycoparasites. Our results suggest that extent of occurrence and cellular interactions of known fungi within lichens have historically been underestimated and raise new questions about their function in specific lichen symbioses.


Assuntos
Basidiomycota/fisiologia , Líquens/fisiologia , Parmeliaceae/fisiologia , Simbiose
16.
Proc Biol Sci ; 285(1889)2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30333206

RESUMO

Lichens exhibit varying degrees of specialization with regard to the surfaces they colonize, ranging from substrate generalists to strict substrate specialists. Though long recognized, the causes and consequences of substrate specialization are poorly known. Using a phylogeny of a 150-200 Mya clade of lichen fungi, we asked whether substrate niche is phylogenetically conserved, which substrates are ancestral, whether specialists arise from generalists or vice versa and how specialization affects speciation/extinction processes. We found strong phylogenetic signal for niche conservatism. Specialists evolved into generalists and back again, but transitions from generalism to specialism were more common than the reverse. Our models suggest that for this group of fungi, 'escape' from specialization for soil, rock and bark occurred, but specialization for wood foreclosed evolution away from that substrate type. In parallel, speciation models showed positive diversification rates for soil and rock dwellers but not other specialists. Patterns in the studied group suggest that fungal substrate specificity is a key determinant of evolutionary trajectory for the entire lichen symbiosis.


Assuntos
Ascomicetos/fisiologia , Evolução Biológica , Líquens/fisiologia , Simbiose , Filogenia
17.
Curr Opin Plant Biol ; 44: 57-63, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29529531

RESUMO

The term symbiosis was first used in biology to describe the 'living together' of fungi and algae in lichens. For much of the 20th century, the fungal partner was assumed to be invested with the ability to produce the lichen body plan in presence of a photosynthesizing partner. However, studies of fungal evolution have uncovered discordance between lichen symbiotic outcomes and genome evolution of the fungus. At the same time, evidence has emerged that the structurally important lichen cortex contains lichen-specific, single-celled microbes, suggesting it may function like a biofilm. Together, these observations suggest we may not have a complete overview of symbiotic interactions in lichens. Understanding phenotype development and evolution in lichens will require greater insight into fungal-fungal and fungal-bacterial interplay and the physical properties of the cortex.


Assuntos
Fungos/fisiologia , Líquens/microbiologia , Simbiose/fisiologia , Evolução Biológica
18.
Science ; 353(6298): 488-92, 2016 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-27445309

RESUMO

For over 140 years, lichens have been regarded as a symbiosis between a single fungus, usually an ascomycete, and a photosynthesizing partner. Other fungi have long been known to occur as occasional parasites or endophytes, but the one lichen-one fungus paradigm has seldom been questioned. Here we show that many common lichens are composed of the known ascomycete, the photosynthesizing partner, and, unexpectedly, specific basidiomycete yeasts. These yeasts are embedded in the cortex, and their abundance correlates with previously unexplained variations in phenotype. Basidiomycete lineages maintain close associations with specific lichen species over large geographical distances and have been found on six continents. The structurally important lichen cortex, long treated as a zone of differentiated ascomycete cells, appears to consistently contain two unrelated fungi.


Assuntos
Ascomicetos/fisiologia , Basidiomycota/fisiologia , Líquens/microbiologia , Simbiose , Basidiomycota/classificação , Basidiomycota/genética , Filogenia
19.
Mol Ecol ; 25(14): 3453-68, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27037681

RESUMO

Large, architecturally complex lichen symbioses arose only a few times in evolution, increasing thallus size by orders of magnitude over those from which they evolved. The innovations that enabled symbiotic assemblages to acquire and maintain large sizes are unknown. We mapped morphometric data against an eight-locus fungal phylogeny across one of the best-sampled thallus size transition events, the origins of the Placopsis lichen symbiosis, and used a phylogenetic comparative framework to explore the role of nitrogen-fixing cyanobacteria in size differences. Thallus thickness increased by >150% and fruiting body core volume increased ninefold on average after acquisition of cyanobacteria. Volume of cyanobacteria-containing structures (cephalodia), once acquired, correlates with thallus thickness in both phylogenetic generalized least squares and phylogenetic generalized linear mixed-effects analyses. Our results suggest that the availability of nitrogen is an important factor in the formation of large thalli. Cyanobacterial symbiosis appears to have enabled lichens to overcome size constraints in oligotrophic environments such as acidic, rain-washed rock surfaces. In the case of the Placopsis fungal symbiont, this has led to an adaptive radiation of more than 60 recognized species from related crustose members of the genus Trapelia. Our data suggest that precyanobacterial symbiotic lineages were constrained to forming a narrow range of phenotypes, so-called cryptic species, leading systematists until now to recognize only six of the 13 species clusters we identified in Trapelia.


Assuntos
Ascomicetos/classificação , Evolução Biológica , Cianobactérias/classificação , Líquens/microbiologia , Simbiose , Filogenia
20.
Lichenologist (Lond) ; 48(5): 469-488, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29398724

RESUMO

The genus Rinodina (Physciaceae), with approximately 300 species, has been subject to few phylogenetic studies. Consequently taxonomic hypotheses in Rinodina are largely reliant on phenotypic data, while hypotheses incorporating DNA dependent methods remain to be tested. Here we investigate Rinodina degeliana/R. subparieta and the Rinodina mniaraea group, which previously have not been subjected to comprehensive molecular and phenotypic studies. We conducted detailed morphological, anatomical, chemical, molecular phylogenetic and species delimitation studies including 24 newly sequenced specimens. We propose that Rinodina degeliana and R. subparieta are conspecific and that chemical morphs within the R. mniaraea group should be recognized as distinct species. We also propose the placement of the recently described genus Oxnerella in Physciaceae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...