Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Evol Biol ; 30(9): 1692-1711, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28612351

RESUMO

The benefits and detriments of recombination for adaptive evolution have been studied both theoretically and experimentally, with conflicting predictions and observations. Most pertinent experiments examine recombination's effects in an unchanging environment and do not study its genomewide effects. Here, we evolved six replicate populations of either highly recombining R+ or lowly recombining R- E. coli strains in a changing environment, by introducing the novel nutrients L-arabinose or indole into the environment. The experiment's ancestral strains are not viable on these nutrients, but 130 generations of adaptive evolution were sufficient to render them viable. Recombination conferred a more pronounced advantage to populations adapting to indole. To study the genomic changes associated with this advantage, we sequenced the genomes of 384 clones isolated from selected replicates at the end of the experiment. These genomes harbour complex changes that range from point mutations to large-scale DNA amplifications. Among several candidate adaptive mutations, those in the tryptophanase regulator tnaC stand out, because the tna operon in which it resides has a known role in indole metabolism. One of the highly recombining populations also shows a significant excess of large-scale segmental DNA amplifications that include the tna operon. This lineage also shows a unique and potentially adaptive combination of point mutations and DNA amplifications that may have originated independently from one another, to be joined later by recombination. Our data illustrate that the advantages of recombination for adaptive evolution strongly depend on the environment and that they can be associated with complex genomic changes.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Recombinação Genética , Adaptação Fisiológica , Sequência de Bases , Meio Ambiente , Mutação , Óperon
2.
J Neurophysiol ; 83(1): 616-20, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10634899

RESUMO

The N-methyl-D-aspartate (NMDA) receptor has been implicated in the formation of synaptic connections. To investigate the role of the epsilon2 (NR2B) NMDA receptor subunit, which is prominently expressed during early development, we used neurons from mice lacking this subunit. Although epsilon2(-/-) mice die soon after birth, we examined whether NMDA receptor targeting to the postsynaptic membrane was dependent on the epsilon2 subunit by rescuing hippocampal neurons from these mice and studying them in autaptic cultures. In voltage-clamp recordings, excitatory postsynaptic currents (EPSCs) from epsilon2(-/-) neurons expressed an NMDA receptor-mediated EPSC that was apparent as soon as synaptic activity developed. However, compared with wild-type neurons, NMDA receptor-mediated EPSC deactivation kinetics were much faster and were less sensitive to glycine, but were blocked by Mg(2+) or AP5. Whole cell currents from epsilon2(-/-) neurons were also more sensitive to block by low concentrations of Zn(2+) and much less sensitive to the epsilon2-specific antagonist ifenprodil than wild-type currents. The rapid NMDA receptor-mediated EPSC deactivation kinetics and the pharmacological profile from epsilon2(-/-) neurons are consistent with the expression of zeta1/epsilon1 diheteromeric receptors in excitatory hippocampal neurons from mice lacking the epsilon2 subunit. Thus epsilon1 can substitute for the epsilon2 subunit at synapses and epsilon2 is not required for targeting of NMDA receptors to the postsynaptic membrane.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Células Cultivadas , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Genótipo , Ácido Glutâmico/farmacologia , Glicina/farmacologia , Heterozigoto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/deficiência , Receptores de N-Metil-D-Aspartato/genética , Transmissão Sináptica/efeitos dos fármacos , Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...