Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(11): e21295, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37920500

RESUMO

This study aims to prepare the energy sector for uncertainty using a foresight tool known as weak signals. Weak signals (subtle signs of emerging issues with significant impact potential) are often overlooked during strategic planning due to their inherent predictive uncertainty. However, the value does not lie in precise forecasting but in broadening the consideration of future possibilities. By proactively monitoring and addressing these otherwise neglected developments, stakeholders can gain early awareness of threats and opportunities and enhance their resilience, adaptability, and innovation. A panel of technology experts identified eight weak signals in this study: 1) growing mistrust and local grid security measures, 2) consumer reactions to overly prescriptive policies, 3) long-term forecasting errors for thin-margin projects, 4) emergence of variable power industries, and 5) establishment of intercontinental transmission precedence; including three potential 'wild cards' requiring proactive mitigation: 6) escalating electrical generation dependence on continued imports, 7) a new threat surpassing climate change, and 8) mass deployment of low-emissions technology triggering a runaway loss of social license. Political factors were the predominant source of uncertainty, as decisions can suddenly transform the energy landscape. Economic, technological, and social factors followed closely behind, generally through the emergence of new industries and behavioural responses. While environmental and legal factors were less frequent, stakeholders should still adopt a holistic approach, as the signals were found to be highly interconnected. Organisations should also assess their local context when applying these findings and continuously update and respond to their own list of weak signals.

2.
Clin Exp Optom ; 93(2): 66-76, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20132232

RESUMO

BACKGROUND: Compact fluorescent lamps (CFLs) have been heralded as highly energy efficient replacements for incandescent light globes, however, there is some public dissatisfaction with the light output and colour of CFLs. Independent examination of the claims made has not been made. Compliance with the interim Australian/New Zealand Standard has not been established by any independent authority. While the total light output (luminous flux) may meet certain standards, luminous intensity distributions of some designs do differ significantly from the incandescent sources that they are intended to replace. METHODS: Luminous intensity distribution, luminous flux and spectral energy distribution of CFLs claimed to be equivalent to 75 W incandescent globes and 75 W incandescent globes (pearl and clear) were measured. Luminous flux, luminous efficacy, colour rendering index, correlated colour temperature, wattage and power factor were then calculated and compared with claims made by manufacturers and requirements of the standards. RESULTS: The sources generally complied with the requirements for luminous flux, luminous efficacy, colour rendering index and correlated colour temperature. The claim of 75 W equivalence, which is not regulated in Australia and New Zealand, is justified less than half the time. Luminous intensity distributions of biaxial CFLs are distinctly different from the incandescent lamps they purport to replace. CONCLUSION: CFLs generally comply with the standards set. The basis on which equivalent wattages are claimed needs to be included in the Australian and New Zealand standard because this is the measure most likely to be relied on by the public. Due to the differences in luminous intensity distribution, CFLs may not necessarily be a direct replacement for incandescent sources without some consideration.


Assuntos
Conservação dos Recursos Naturais , Fontes de Energia Elétrica/economia , Planejamento Ambiental , Iluminação , Optometria , Australásia , Redução de Custos , Desenho de Equipamento , Humanos , Iluminação/economia , Iluminação/instrumentação , Iluminação/métodos , Modelos Teóricos , Nova Zelândia , Doses de Radiação , Radiometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...