Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 41(4): 2296-312, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23295675

RESUMO

The E3 ubiquitin ligase Rad18 mediates tolerance of replication fork-stalling bulky DNA lesions, but whether Rad18 mediates tolerance of bulky DNA lesions acquired outside S-phase is unclear. Using synchronized cultures of primary human cells, we defined cell cycle stage-specific contributions of Rad18 to genome maintenance in response to ultraviolet C (UVC) and H(2)O(2)-induced DNA damage. UVC and H(2)O(2) treatments both induced Rad18-mediated proliferating cell nuclear antigen mono-ubiquitination during G(0), G(1) and S-phase. Rad18 was important for repressing H(2)O(2)-induced (but not ultraviolet-induced) double strand break (DSB) accumulation and ATM S1981 phosphorylation only during G(1), indicating a specific role for Rad18 in processing of oxidative DNA lesions outside S-phase. However, H(2)O(2)-induced DSB formation in Rad18-depleted G1 cells was not associated with increased genotoxin sensitivity, indicating that back-up DSB repair mechanisms compensate for Rad18 deficiency. Indeed, in DNA LigIV-deficient cells Rad18-depletion conferred H(2)O(2)-sensitivity, demonstrating functional redundancy between Rad18 and non-homologous end joining for tolerance of oxidative DNA damage acquired during G(1). In contrast with G(1)-synchronized cultures, S-phase cells were H(2)O(2)-sensitive following Rad18-depletion. We conclude that although Rad18 pathway activation by oxidative lesions is not restricted to S-phase, Rad18-mediated trans-lesion synthesis by Polη is dispensable for damage-tolerance in G(1) (because of back-up non-homologous end joining-mediated DSB repair), yet Rad18 is necessary for damage tolerance during S-phase.


Assuntos
Ciclo Celular/genética , Reparo do DNA , Proteínas de Ligação a DNA/fisiologia , Células Cultivadas , Quebras de DNA de Cadeia Dupla , Dano ao DNA , DNA Polimerase Dirigida por DNA/metabolismo , Fase G1/genética , Humanos , Peróxido de Hidrogênio/toxicidade , Oxirredução , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína de Replicação A/metabolismo , Fase S/genética , Ubiquitina-Proteína Ligases , Ubiquitinação
2.
Methods Mol Biol ; 782: 159-70, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21870290

RESUMO

Following acquisition of DNA damage S-phase progression may potentially be affected via multiple mechanisms. For example DNA damage-activated signal transduction pathways negatively regulate the initiation of DNA synthesis at unfired origins of replication, a process termed the 'S-phase checkpoint' or the 'intra-S-phase checkpoint'. Additionally, many DNA lesions pose physical barriers to replication forks and therefore inhibit DNA synthesis directly by blocking the elongation of active replicons. Inhibition of DNA synthesis in response to DNA damage is commonly assayed by measuring incorporation of radiolabeled or halogenated nucleotides into bulk genomic DNA. However, these techniques do not distinguish between effects of DNA damage on initiation and elongation phases of DNA synthesis. The velocity sedimentation protocol described here allows investigators to determine the effects of DNA damage on initiation and elongation events. This technique involves labeling replicating DNA with (3)H-thymidine, then analyzing the size distribution of labeled ssDNAs based on their differential density sedimentation profiles after centrifugation through alkaline sucrose gradients. Determining the relative abundance and growth rates of small nascent ssDNAs provides an index of initiation and elongation events, respectively. Therefore, analysis of replication dynamics using velocity sedimentation provides a potentially valuable tool for assaying S-phase checkpoints as well as other aspects of DNA replication.


Assuntos
Fracionamento Químico/métodos , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/genética , Mutagênicos/farmacologia , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase S do Ciclo Celular/genética , Linhagem Celular , Dano ao DNA/genética , Dano ao DNA/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...