Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 17(3): 52-60, 2016 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-27167259

RESUMO

The purpose of this study was to evaluate the accuracy and calculation speed of electron dose distributions calculated by the Eclipse electron Monte Carlo (eMC) algorithm for use with bolus electron conformal therapy (ECT). The recent com-mercial availability of bolus ECT technology requires further validation of the eMC dose calculation algorithm. eMC-calculated electron dose distributions for bolus ECT have been compared to previously measured TLD-dose points throughout patient-based cylindrical phantoms (retromolar trigone and nose), whose axial cross sections were based on the mid-PTV (planning treatment volume) CT anatomy. The phantoms consisted of SR4 muscle substitute, SR4 bone substitute, and air. The treatment plans were imported into the Eclipse treatment planning system, and electron dose distributions calculated using 1% and < 0.2% statistical uncertainties. The accuracy of the dose calculations using moderate smoothing and no smooth-ing were evaluated. Dose differences (eMC-calculated less measured dose) were evaluated in terms of absolute dose difference, where 100% equals the given dose, as well as distance to agreement (DTA). Dose calculations were also evaluated for calculation speed. Results from the eMC for the retromolar trigone phantom using 1% statistical uncertainty without smoothing showed calculated dose at 89% (41/46) of the measured TLD-dose points was within 3% dose difference or 3 mm DTA of the measured value. The average dose difference was -0.21%, and the net standard deviation was 2.32%. Differences as large as 3.7% occurred immediately distal to the mandible bone. Results for the nose phantom, using 1% statistical uncertainty without smoothing, showed calculated dose at 93% (53/57) of the measured TLD-dose points within 3% dose difference or 3 mm DTA. The average dose difference was 1.08%, and the net standard deviation was 3.17%. Differences as large as 10% occurred lateral to the nasal air cavities. Including smoothing had insignificant effects on the accuracy of the retromolar trigone phantom calculations, but reduced the accuracy of the nose phantom calculations in the high-gradient dose areas. Dose calculation times with 1% statistical uncertainty for the retromolar trigone and nose treatment plans were 30 s and 24 s, respectively, using 16 processors (Intel Xeon E5-2690, 2.9 GHz) on a framework agent server (FAS). In comparison, the eMC was significantly more accurate than the pencil beam algorithm (PBA). The eMC has comparable accuracy to the pencil beam redefinition algorithm (PBRA) used for bolus ECT planning and has acceptably low dose calculation times. The eMC accuracy decreased when smoothing was used in high-gradient dose regions. The eMC accuracy was consistent with that previously reported for accuracy of the eMC electron dose algorithm and shows that the algorithm is suitable for clinical implementation of bolus ECT.


Assuntos
Algoritmos , Elétrons , Método de Monte Carlo , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia Conformacional/normas , Humanos , Dosagem Radioterapêutica
2.
Med Phys ; 40(7): 071720, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23822424

RESUMO

PURPOSE: The purpose of this study was to document the improved accuracy of the pencil beam redefinition algorithm (PBRA) compared to the pencil beam algorithm (PBA) for bolus electron conformal therapy using cylindrical patient phantoms based on patient computed tomography (CT) scans of retromolar trigone and nose cancer. METHODS: PBRA and PBA electron dose calculations were compared with measured dose in retromolar trigone and nose phantoms both with and without bolus. For the bolus treatment plans, a radiation oncologist outlined a planning target volume (PTV) on the central axis slice of the CT scan for each phantom. A bolus was designed using the planning.decimal(®) (p.d) software (.decimal, Inc., Sanford, FL) to conform the 90% dose line to the distal surface of the PTV. Dose measurements were taken with thermoluminescent dosimeters placed into predrilled holes. The Pinnacle(3) (Philips Healthcare, Andover, MD) treatment planning system was used to calculate PBA dose distributions. The PBRA dose distributions were calculated with an in-house C++ program. In order to accurately account for the phantom materials a table correlating CT number to relative electron stopping and scattering powers was compiled and used for both PBA and PBRA dose calculations. Accuracy was determined by comparing differences in measured and calculated dose, as well as distance to agreement for each measurement point. RESULTS: The measured doses had an average precision of 0.9%. For the retromolar trigone phantom, the PBRA dose calculations had an average ± 1σ dose difference (calculated - measured) of -0.65% ± 1.62% without the bolus and -0.20% ± 1.54% with the bolus. The PBA dose calculation had an average dose difference of 0.19% ± 3.27% without the bolus and -0.05% ± 3.14% with the bolus. For the nose phantom, the PBRA dose calculations had an average dose difference of 0.50% ± 3.06% without bolus and -0.18% ± 1.22% with the bolus. The PBA dose calculations had an average dose difference of 0.65% ± 6.21% without bolus and 1.75% ± 5.94% with the bolus. From a clinical perspective an agreement of 5% or better between planned (calculated) and delivered (measured) dose is desired. Statistically, this was true for 99% (± 2σ) of the dose points for three of the four cases for the PBRA dose calculations, the exception being the nose without bolus for which this was true for 89% (± 1.6σ) of the dose points. For the retromolar trigone, with and without bolus, the PBA showed agreement of 5% or better for approximately 86% (± 1.5σ) of the dose points. For the nose, with and without bolus, the PBA showed agreement of 5% or better for only approximately 58% (± 0.8σ) of the dose points. CONCLUSIONS: The measured data, whose high precision makes them useful for evaluation of the accuracy of electron dose algorithms, will be made publicly available. Based on the spread in dose differences, the PBRA has at least twice the accuracy of the PBA. From a clinical perspective the PBRA accuracy is acceptable in the retromolar trigone and nose for electron therapy with and without bolus.


Assuntos
Algoritmos , Elétrons/uso terapêutico , Imagens de Fantasmas , Doses de Radiação , Radioterapia Conformacional/instrumentação , Humanos , Dosagem Radioterapêutica , Dosimetria Termoluminescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...