Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Soc Rev ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38912871

RESUMO

Ionic liquids (ILs) and deep eutectic solvents (DESs) have tremendous potential for reactive capture and conversion (RCC) of CO2 due to their wide electrochemical stability window, low volatility, and high CO2 solubility. There is environmental and economic interest in the direct utilization of the captured CO2 using electrified and modular processes that forgo the thermal- or pressure-swing regeneration steps to concentrate CO2, eliminating the need to compress, transport, or store the gas. The conventional electrochemical conversion of CO2 with aqueous electrolytes presents limited CO2 solubility and high energy requirement to achieve industrially relevant products. Additionally, aqueous systems have competitive hydrogen evolution. In the past decade, there has been significant progress toward the design of ILs and DESs, and their composites to separate CO2 from dilute streams. In parallel, but not necessarily in synergy, there have been studies focused on a few select ILs and DESs for electrochemical reduction of CO2, often diluting them with aqueous or non-aqueous solvents. The resulting electrode-electrolyte interfaces present a complex speciation for RCC. In this review, we describe how the ILs and DESs are tuned for RCC and specifically address the CO2 chemisorption and electroreduction mechanisms. Critical bulk and interfacial properties of ILs and DESs are discussed in the context of RCC, and the potential of these electrolytes are presented through a techno-economic evaluation.

2.
ChemSusChem ; 17(6): e202301337, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-37931228

RESUMO

Recently, tandem cathodic reactions have been demonstrated in non-aqueous solvents to couple CO2 reduction to a secondary reaction to create novel species that are not produced in aqueous CO2 electrolysis. One reaction that can be performed with high selectivity and durability is the electrochemical conversion of CO2 to formic acid and in-situ esterification with methanol to produce methyl formate. However, the translation to a high-performance flow electrolyzer is far from trivial, as the non-aqueous catholyte leads to reactor challenges including flooding the gas diffusion electrode. Here, a two-membrane flow electrolyzer with both anion and cation exchange membranes was used with flowing methanol catholyte and aqueous anolyte. This design prevented methanol from flooding the cathode, which was a pervasive limiting issue for electrolyzers with a single membrane. Methyl formate production at 42.9 % faradaic efficiency was achieved with pure methanol in a flow electrolyzer with stable performance beyond 80 min. However, low-water-content catholyte compositions also led to increased cell resistance and lower operating current densities. Thus, with the present ionomer materials there is a tradeoff between methyl formate selectivity and current density depending on water concentration, highlighting a need for new ionomers tailored for desirable non-aqueous solvents such as methanol.

3.
Langmuir ; 38(31): 9526-9531, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35900104

RESUMO

Developing an efficient catalytic system for electrolysis with reduced platinum (Pt) loading while maintaining performance comparable to bulk platinum metal is important to decrease costs and improve scalability of the hydrogen fuel economy. Here we report the performance of a novel sputter-deposited molybdenum (Mo) thin film with an extremely low co-loading of Pt, where Pt atoms were dispersed on Mo (Ptd-Mo) as an electrocatalyst for the hydrogen evolution reaction (HER) in either alkaline or acidic media. The Ptd-Mo electrocatalyst presents similar catalytic activity to bulk Pt in alkaline media, while the performance is only slightly decreased in acidic media. Differential electrochemical mass spectrometry (DEMS) results confirm that the Ptd-Mo electrocatalyst produced hydrogen at a rate comparable with that of a pristine Pt sample at the same potential. A comparison with Pt-loaded degenerately doped p-type doped silicon (Ptd-Si) suggests that Mo and Pt work synergistically to boost the performance of Ptd-Mo catalysts. Cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS) before and after 1000 cycles of continuous operation confirm the significant durability of the Ptd-Mo performance. Overall, the Ptd-Mo electrocatalyst, with comparable HER activity to bulk Pt despite an ultra-low Pt loading, could be a strong candidate for hydrogen production in either acidic or basic conditions.

4.
Inorg Chem ; 61(25): 9792-9800, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35687329

RESUMO

In this study, we report a pair of electrocatalysts for the hydrogen evolution reaction (HER) based on the noninnocent ligand diacetyl-2-(4-methyl-3-thiosemicarbazone)-3-(2-pyridinehydrazone) (H2DMTH, H2L1). The neutral complexes NiL1 and PdL1 were synthesized and characterized by spectroscopic and electrochemical methods. The complexes contain a non-coordinating, basic hydrazino nitrogen that is protonated during the HER. The pKa of this nitrogen was determined by spectrophotometric titration in acetonitrile to be 12.71 for NiL1 and 13.03 for PdL1. Cyclic voltammograms of both NiL1 and PdL1 in acetonitrile exhibit diffusion-controlled, reversible ligand-centered events at -1.83 and -1.79 V (vs ferrocenium/ferrocene) for NiL1 and PdL1, respectively. A quasi-reversible, ligand-centered event is observed at -2.43 and -2.34 V for NiL1 and PdL1, respectively. The HER activity in acetonitrile was evaluated using a series of neutral and cationic acids for each catalyst. Kinetic isotope effect (KIE) studies suggest that the precatalytic event observed is associated with a proton-coupled electron transfer step. The highest turnover frequency values observed were 6150 s-1 at an overpotential of 0.74 V for NiL1 and 8280 s-1 at an overpotential of 0.44 V for PdL1. Density functional theory (DFT) computations suggest both complexes follow a ligand-centered HER mechanism where the metals remain in the +2 oxidation state.


Assuntos
Hidrogênio , Níquel , Acetonitrilas , Ligantes , Níquel/química , Oxirredução
5.
ChemSusChem ; 15(5): e202102289, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-34979055

RESUMO

The conversion of waste CO2 to value-added chemicals through electrochemical reduction is a promising technology for mitigating climate change while simultaneously providing economic opportunities. The use of non-aqueous solvents like methanol allows for higher CO2 availability and novel products. In this work, the electrochemistry of CO2 reduction in acidic methanol catholyte at a Pb working electrode was investigated while using a separate aqueous anolyte to promote a sustainable water oxidation half-reaction. The selectivity among methyl formate (a product unique to reduction of CO2 in methanol), formic acid, and formate was critically dependent on the catholyte pH, with higher pH conditions leading to formate and low pH favoring methyl formate. The potential dependence of the product distribution in acidic catholyte was also investigated, with a faradaic efficiency for methyl formate as high as 75 % measured at -2.0 V vs. Ag/AgCl.


Assuntos
Dióxido de Carbono , Metanol , Catálise , Técnicas Eletroquímicas , Eletrólitos , Ésteres do Ácido Fórmico , Concentração de Íons de Hidrogênio , Chumbo
6.
Small ; 18(3): e2103822, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35048505

RESUMO

Slurries of semiconductor particles individually capable of unassisted light-driven water-splitting are modeled to have a promising path to low-cost solar hydrogen generation, but they have had poor efficiencies. Tandem microparticle systems are a clear direction to pursue to increase efficiency. However, light absorption must be carefully managed in a tandem to prevent current mismatch in the subcells, which presents a possible challenge for tandem microwire particles suspended in a liquid. In this work, a Ni-catalyzed Si/TiO2 tandem microwire slurry is used as a stand-in for an ideal bandgap combination to demonstrate proof-of-concept in situ alignment of unassisted water-splitting microwires with an external magnetic field. The Ni hydrogen evolution catalyst is selectively photodeposited at the exposed Si microwire core to serve as the cathode site as well as a handle for magnetic orientation. The frequency distribution of the suspended microwire orientation angles is determined as a function of magnetic field strength under dispersion with and without uplifting microbubbles. After magnetizing the Ni bulb, tandem microwires can be highly aligned in water under a magnetic field despite active dispersion from bubbling or convection.

7.
Small Methods ; 5(7): e2100322, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34927994

RESUMO

Electrocatalysis and photoelectrochemistry are critical to technologies like fuel cells, electrolysis, and solar fuels. Material stability and interfacial phenomena are central to the performance and long-term viability of these technologies. Researchers need tools to uncover the fundamental processes occurring at the electrode/electrolyte interface. Numerous analytical instruments are well-developed for material characterization, but many are ex situ techniques often performed under vacuum and without applied bias. Such measurements miss dynamic phenomena in the electrolyte under operational conditions. However, innovative advancements have allowed modification of these techniques for in situ characterization in liquid environments at electrochemically relevant conditions. This review explains some of the main in situ electrochemical characterization techniques, briefly explaining the principle of operation and highlighting key work in applying the method to investigate material stability and interfacial properties for electrocatalysts and photoelectrodes. Covered methods include spectroscopy (in situ UV-vis, ambient pressure X-ray photoelectron spectroscopy (APXPS), and in situ Raman), mass spectrometry (on-line inductively coupled plasma mass spectrometry (ICP-MS) and differential electrochemical mass spectrometry (DEMS)), and microscopy (in situ transmission electron microscopy (TEM), electrochemical atomic force microscopy (EC-AFM), electrochemical scanning tunneling microscopy (EC-STM), and scanning electrochemical microscopy (SECM)). Each technique's capabilities and advantages/disadvantages are discussed and summarized for comparison.

8.
ChemSusChem ; 13(11): 3028-3033, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32267609

RESUMO

Efficient electroreduction of carbon dioxide has been a widely pursued goal as a sustainable method to produce value-added chemicals while mitigating greenhouse gas emissions. Processes have been demonstrated for the electroreduction of CO2 to CO at nearly 100 % faradaic efficiency, and as a consequence, there has been growing interest in the further electroreduction of carbon monoxide. Oxide-derived copper catalysts have promising performance for the reduction of CO to hydrocarbons but have still been unable to achieve high selectivity to individual products. A pulsed-bias technique is one strategy for tuning electrochemical selectivity without changing the catalyst. Herein a pulsed-bias electroreduction of CO was investigated on oxide-derived copper catalyst. Increased selectivity for single-carbon products (i.e., formate and methane) was achieved for higher pulse frequencies (<1 s pulse times), as well as an increase in the fraction of charge directed to CO reduction rather than hydrogen evolution.

9.
Inorg Chem ; 59(7): 4835-4841, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32193928

RESUMO

As atmospheric levels of carbon dioxide (CO2) continue to increase, there is an immediate need to balance the carbon cycle. Current approaches require multiple processes to fix CO2 from the atmosphere or flue gas and then reduce it to value-added products. The zinc(II) catalyst Zn(DMTH) (DMTH = diacetyl-2-(4-methyl-3-thiosemicarbazonate)-3-(2-pyridinehydrazonato)) reduces CO2 from air to formate with a faradaic efficiency of 15.1% based on total charge. The catalyst utilizes metal-ligand cooperativity and redox-active ligands to fix, activate, and reduce CO2. This approach provides a new strategy that incorporates sustainable earth-abundant metals that are oxygen and water tolerant.

10.
Chem Commun (Camb) ; 55(64): 9440-9443, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31328206

RESUMO

The molecular catalyst diacetyl-bis(N-4-methyl-3-thiosemi-carbazonato)nickel(ii) (NiATSM) was integrated with Si for light-driven hydrogen evolution from water. Compared to an equivalent loading of Ni metal, the NiATSM/p-Si electrode performed better. Durability of the surface-bound catalyst under operation in acid was achieved without covalent attachment by using Nafion binding.

11.
Chem Commun (Camb) ; 54(95): 13347-13350, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30417899

RESUMO

A nitrogen plasma was incorporated into the cathode side of an electrolyzer to provide energetically activated N2 species to the electrocatalyst surface. At an applied bias of ∼3.5 V across the electrolyzer, plasma-assisted operation was observed to produce 47% more ammonia than the combination of plasma-without-bias and bias-without-plasma conditions.

12.
Angew Chem Int Ed Engl ; 56(13): 3645-3649, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28229519

RESUMO

Electrochemical conversion of CO2 into energy-dense liquids, such as formic acid, is desirable as a hydrogen carrier and a chemical feedstock. SnOx is one of the few catalysts that reduce CO2 into formic acid with high selectivity but at high overpotential and low current density. We show that an electrochemically reduced SnO2 porous nanowire catalyst (Sn-pNWs) with a high density of grain boundaries (GBs) exhibits an energy conversion efficiency of CO2 -into-HCOOH higher than analogous catalysts. HCOOH formation begins at lower overpotential (350 mV) and reaches a steady Faradaic efficiency of ca. 80 % at only -0.8 V vs. RHE. A comparison with commercial SnO2 nanoparticles confirms that the improved CO2 reduction performance of Sn-pNWs is due to the density of GBs within the porous structure, which introduce new catalytically active sites. Produced with a scalable plasma synthesis technology, the catalysts have potential for application in the CO2 conversion industry.

13.
Phys Chem Chem Phys ; 16(8): 3623-31, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24435160

RESUMO

WO3 is a promising candidate for a photoanode material in an acidic electrolyte, in which it is more stable than most metal oxides, but kinetic limitations combined with the large driving force available in the WO3 valence band for water oxidation make competing reactions such as the oxidation of the acid counterion a more favorable reaction. The incorporation of an oxygen evolving catalyst (OEC) on the WO3 surface can improve the kinetics for water oxidation and increase the branching ratio for O2 production. Ir-based OECs were attached to WO3 photoanodes by a variety of methods including sintering from metal salts, sputtering, drop-casting of particles, and electrodeposition to analyze how attachment strategies can affect photoelectrochemical oxygen production at WO3 photoanodes in 1 M H2SO4. High surface coverage of catalyst on the semiconductor was necessary to ensure that most minority-carrier holes contributed to water oxidation through an active catalyst site rather than a side-reaction through the WO3/electrolyte interface. Sputtering of IrO2 layers on WO3 did not detrimentally affect the energy-conversion behavior of the photoanode and improved the O2 yield at 1.2 V vs. RHE from ~0% for bare WO3 to 50-70% for a thin, optically transparent catalyst layer to nearly 100% for thick, opaque catalyst layers. Measurements with a fast one-electron redox couple indicated ohmic behavior at the IrO2/WO3 junction, which provided a shunt pathway for electrocatalytic IrO2 behavior with the WO3 photoanode under reverse bias. Although other OECs were tested, only IrO2 displayed extended stability under the anodic operating conditions in acid as determined by XPS.

15.
Nat Mater ; 9(3): 239-44, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20154692

RESUMO

Si wire arrays are a promising architecture for solar-energy-harvesting applications, and may offer a mechanically flexible alternative to Si wafers for photovoltaics. To achieve competitive conversion efficiencies, the wires must absorb sunlight over a broad range of wavelengths and incidence angles, despite occupying only a modest fraction of the array's volume. Here, we show that arrays having less than 5% areal fraction of wires can achieve up to 96% peak absorption, and that they can absorb up to 85% of day-integrated, above-bandgap direct sunlight. In fact, these arrays show enhanced near-infrared absorption, which allows their overall sunlight absorption to exceed the ray-optics light-trapping absorption limit for an equivalent volume of randomly textured planar Si, over a broad range of incidence angles. We furthermore demonstrate that the light absorbed by Si wire arrays can be collected with a peak external quantum efficiency of 0.89, and that they show broadband, near-unity internal quantum efficiency for carrier collection through a radial semiconductor/liquid junction at the surface of each wire. The observed absorption enhancement and collection efficiency enable a cell geometry that not only uses 1/100th the material of traditional wafer-based devices, but also may offer increased photovoltaic efficiency owing to an effective optical concentration of up to 20 times.

16.
Science ; 327(5962): 185-7, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-20056886

RESUMO

Silicon wire arrays, though attractive materials for use in photovoltaics and as photocathodes for hydrogen generation, have to date exhibited poor performance. Using a copper-catalyzed, vapor-liquid-solid-growth process, SiCl4 and BCl3 were used to grow ordered arrays of crystalline p-type silicon (p-Si) microwires on p+-Si(111) substrates. When these wire arrays were used as photocathodes in contact with an aqueous methyl viologen(2+/+) electrolyte, energy-conversion efficiencies of up to 3% were observed for monochromatic 808-nanometer light at fluxes comparable to solar illumination, despite an external quantum yield at short circuit of only 0.2. Internal quantum yields were at least 0.7, demonstrating that the measured photocurrents were limited by light absorption in the wire arrays, which filled only 4% of the incident optical plane in our test devices. The inherent performance of these wires thus conceptually allows the development of efficient photovoltaic and photoelectrochemical energy-conversion devices based on a radial junction platform.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...