Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 10(11)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36422321

RESUMO

Fourier-transform infrared spectroscopy (FT-IR), multispectral imaging (MSI), and an electronic nose (E-nose) were implemented individually and in combination in an attempt to investigate and, hence, identify the complexity of the phenomenon of spoilage in poultry. For this purpose, marinated chicken souvlaki samples were subjected to storage experiments (isothermal conditions: 0, 5, and 10 °C; dynamic temperature conditions: 12 h at 0 °C, 8 h at 5 °C, and 4 h at 10 °C) under aerobic conditions. At pre-determined intervals, samples were microbiologically analyzed for the enumeration of total viable counts (TVCs) and Pseudomonas spp., while, in parallel, FT-IR, MSI, and E-nose measurements were acquired. Quantitative models of partial least squares-Regression (PLS-R) and support vector machine-regression (SVM-R) (separately for each sensor and in combination) were developed and validated for the estimation of TVCs in marinated chicken souvlaki. Furthermore, classification models of linear discriminant analysis (LDA), linear support vector machine (LSVM), and cubic support vector machines (CSVM) that classified samples into two quality classes (non-spoiled or spoiled) were optimized and evaluated. The model performance was assessed with data obtained by six different analysts and three different batches of marinated souvlaki. Concerning the estimation of the TVCs via the PLS-R model, the most efficient prediction was obtained with spectral data from MSI (root mean squared error-RMSE: 0.998 log CFU/g), as well as with combined data from FT-IR/MSI (RMSE: 0.983 log CFU/g). From the developed SVM-R models, the predictions derived from MSI and FT-IR/MSI data accurately estimated the TVCs with RMSE values of 0.973 and 0.999 log CFU/g, respectively. For the two-class models, the combined data from the FT-IR/MSI instruments analyzed with the CSVM algorithm provided an overall accuracy of 87.5%, followed by the MSI spectral data analyzed with LSVM, with an overall accuracy of 80%. The abovementioned findings highlighted the efficacy of these non-invasive rapid methods when used individually and in combination for the assessment of spoilage in marinated chicken products regardless of the impact of the analyst, season, or batch.

2.
Foods ; 10(11)2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34829004

RESUMO

Fourier transform infrared spectroscopy (FT-IR) and multispectral imaging (MSI) were evaluated for the prediction of the microbiological quality of poultry meat via regression and classification models. Chicken thigh fillets (n = 402) were subjected to spoilage experiments at eight isothermal and two dynamic temperature profiles. Samples were analyzed microbiologically (total viable counts (TVCs) and Pseudomonas spp.), while simultaneously MSI and FT-IR spectra were acquired. The organoleptic quality of the samples was also evaluated by a sensory panel, establishing a TVC spoilage threshold at 6.99 log CFU/cm2. Partial least squares regression (PLS-R) models were employed in the assessment of TVCs and Pseudomonas spp. counts on chicken's surface. Furthermore, classification models (linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), support vector machines (SVMs), and quadratic support vector machines (QSVMs)) were developed to discriminate the samples in two quality classes (fresh vs. spoiled). PLS-R models developed on MSI data predicted TVCs and Pseudomonas spp. counts satisfactorily, with root mean squared error (RMSE) values of 0.987 and 1.215 log CFU/cm2, respectively. SVM model coupled to MSI data exhibited the highest performance with an overall accuracy of 94.4%, while in the case of FT-IR, improved classification was obtained with the QDA model (overall accuracy 71.4%). These results confirm the efficacy of MSI and FT-IR as rapid methods to assess the quality in poultry products.

3.
Foods ; 10(4)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916748

RESUMO

Chicken is one of the most widely consumed meats worldwide. The exploration of the bacterial diversity of chicken meat may provide new insights into the chicken-associated microbiome that will lead to moderation of food spoilage or safety. This study was undertaken to explore the bacterial communities of chicken breast and thigh fillets stored at refrigeration (0 °C and 5 °C) and slightly abuse (10 °C) temperatures for 5 days through conventional cultural methods along with next-generation sequencing (NGS) analysis. Total viable counts (TVC), Brochothrix thermosphacta, Pseudomonas spp., and lactic acid bacteria (LAB) were enumerated, while the bacterial communities were mapped through 16S rRNA gene amplicon sequencing. Chicken breast and thigh fillets possessed a complex bacterial structure that incorporated a total of >200 Operational Taxonomic Units (OTUs) at the genus level. The core microbiota of fresh samples consisted of Acinetobacter, Brochothrix, Flavobacterium, Pseudomonas, Psychrobacter, and Vibrionaceae (family). These genera persisted until the end of storage in >80% of samples, except Psychrobacter and Flavobacterium, while Photobacterium was also identified. Hierarchical clustering showed a distinction of samples based on storage time and chicken part. Conventional plate counting with growth media commonly used in spoilage studies did not always correspond to the microbial community profiles derived from NGS analysis, especially in Pseudomonas, Acinetobacter, Photobacterium, and Vibrionaceae. Results of the present study highlight Photobacterium and Vibrionaceae, in general, as potent chicken meat spoilers and suggest the necessity to combine classical microbiological methods along with NGS technologies to characterize chicken meat spoilage microbiota.

4.
Curr Res Food Sci ; 4: 121-131, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33748779

RESUMO

The objective of this research was the evaluation of Fourier transforms infrared spectroscopy (FT-IR) and multispectral image analysis (MSI) as efficient spectroscopic methods in tandem with multivariate data analysis and machine learning for the assessment of spoilage on the surface of chicken breast fillets. For this purpose, two independent storage experiments of chicken breast fillets (n â€‹= â€‹215) were conducted at 0, 5, 10, and 15 â€‹°C for up to 480 â€‹h. During storage, samples were analyzed microbiologically for the enumeration of Total Viable Counts (TVC) and Pseudomonas spp. In addition, FT-IR and MSI spectral data were collected at the same time intervals as for microbiological analyses. Multivariate data analysis was performed using two software platforms (a commercial and a publicly available developed platform) comprising several machine learning algorithms for the estimation of the TVC and Pseudomonas spp. population of the surface of the samples. The performance of the developed models was evaluated by intra batch and independent batch testing. Partial Least Squares- Regression (PLS-R) models from the commercial software predicted TVC with root mean square error (RMSE) values of 1.359 and 1.029 log CFU/cm2 for MSI and FT-IR analysis, respectively. Moreover, RMSE values for Pseudomonas spp. model were 1.574 log CFU/cm2 for MSI data and 1.078 log CFU/cm2 for FT-IR data. From the implementation of the in-house sorfML platform, artificial neural networks (nnet) and least-angle regression (lars) were the most accurate models with the best performance in terms of RMSE values. Nnet models developed on MSI data demonstrated the lowest RMSE values (0.717 log CFU/cm2) for intra-batch testing, while lars outperformed nnet on independent batch testing with RMSE of 1.252 log CFU/cm2. Furthermore, lars models excelled with the FT-IR data with RMSE of 0.904 and 0.851 log CFU/cm2 in intra-batch and independent batch testing, respectively. These findings suggested that FT-IR analysis is more efficient than MSI to predict the microbiological quality on the surface of chicken breast fillets.

5.
Microorganisms ; 8(4)2020 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32290382

RESUMO

The aim of this study was to investigate on an industrial scale the potential of multispectral imaging (MSI) in the assessment of the quality of different poultry products. Therefore, samples of chicken breast fillets, thigh fillets, marinated souvlaki and burger were subjected to MSI analysis during production together with microbiological analysis for the enumeration of Total Viable Counts (TVC) and Pseudomonas spp. Partial Least Squares Regression (PLS-R) models were developed based on the spectral data acquired to predict the "time from slaughter" parameter for each product type. Results showed that PLS-R models could predict effectively the time from slaughter in all products, while the food matrix and variations within and between batches were identified as significant factors affecting the performance of the models. The chicken thigh model showed the lowest RMSE value (0.160) and an acceptable correlation coefficient (r = 0.859), followed by the chicken burger model where RMSE and r values were 0.285 and 0.778, respectively. Additionally, for the chicken breast fillet model the calculated r and RMSE values were 0.886 and 0.383 respectively, whereas for chicken marinated souvlaki, the respective values were 0.934 and 0.348. Further improvement of the provided models is recommended in order to develop efficient models estimating time from slaughter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...