Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37512208

RESUMO

In this study, a self-compacting high-strength concrete based on ordinary and sulfate-resistant cements was developed for use in textile-reinforced structural elements. The control concrete was made from quartz sand and tap water, and the sea concrete was made from sea water and sea sand for the purpose of applying local building materials to construction sites in the coastal area. The properties of a self-compacting concrete mixture, as well as concrete and textile-reinforced concrete based on it, were determined. It was found that at the age of 28 days, the compressive strength of the sea concrete was 72 MPa, and the flexural strength was 9.2 MPa. The compressive strength of the control concrete was 69.4 MPa at the age of 28 days, and the flexural strength was 11.1 MPa. The drying shrinkage of the sea concrete at 28 days exceeded the drying shrinkage of the control concrete by 18%. The uniaxial tensile test showed the same behavior of the control and marine textile-reinforced concrete; after the formation of five cracks, only the carbon textile reinforcement came into operation. Accordingly, the use of sea water and sea sand in combination with a cement with reduced CO2 emissions and textile reinforcement for load-bearing concrete structures is a promising, sustainable approach.

2.
Polymers (Basel) ; 14(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35406284

RESUMO

Anchorage to concrete is a recurring application in construction. For such applications, bonded anchors, formed by means of a polymer adhesive injection into a borehole, are a widely used product due to their flexibility in regards to the construction logistics and positioning of the attached element as well as high load capacities. At the same time, fibre-reinforced concrete is the material of choice for many engineering applications where anchors have to be installed. Moreover, the use of steel fibre-reinforced concrete is likely to increase, since it now falls in the scope of the second-generation Eurocode 2 (exp. 2023). Therefore, the condition of the anchor installation borehole-mainly the roughness and grip of its internal surface-is known to play a critical role in the stress transfer from the attached component, through the fastening and into the concrete, and, hence, to the load-bearing performance. At the same time, drilling through the steel fibre reinforcement, along with the accelerated wear of the drilling tools, can in turn influence the borehole's roughness and the overall installation quality. Furthermore, steel fibre may lead to an additional local stiffening of the concrete where the anchor is installed. These complex elements are discussed herein on the basis of multiple tests on anchors in plain and steel fibre concrete, as well as numerical analyses. The results indicate particular aspects of bonded anchor design and product certification for different polymer-based construction adhesives.

3.
Materials (Basel) ; 15(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35269116

RESUMO

Steel fiber reinforced concrete (SFRC) is currently the material of choice for a broad range of structural components. Through the use of SFRC, the entire, or a large portion of, conventional rebar reinforcement can be replaced, in order to improve the load-bearing behavior but also the serviceability and durability characteristics of engineering structures. The use of fiber reinforcement therefore plays a vital role in acute current and future construction industry objectives, these being a simultaneous increase in the service life of structures and the reduction of their environmental impact, in addition to resilience to extreme loads and environmental actions. Next to the extended use of SFRC, modern construction relies heavily on structural connections and assembly technologies, typically by use of bolt-type cast-in and post-installed concrete anchors. This paper addresses the influence of fiber reinforcement on the structural performance of such anchors in SFRC and, particularly, the load bearing behavior of single headed anchors under axial static loads in uncracked and cracked concrete. Along with a presentation of background information on previous studies of SFRC with a focus on anchor concrete breakout failure, the experimental investigations are described, and their results are presented and elaborated on by consideration of various research parameters. A comparison with current design approaches is also provided. The conclusions are deemed useful for structural engineering research and practice.

4.
Materials (Basel) ; 14(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375620

RESUMO

Anchorage to concrete plays a significant role in various aspects of modern construction. The structural performance of anchors under direct tensile load can lead to failure by concrete cone breakout. Concrete related failure modes are quasi-brittle, and as such, they may develop without prior warning indications of damage, while it also exposes the bearing component to damage propagation. As such, an adequate reliability assessment of anchors against concrete cone failure is of high importance, and improved precision and minimisation of uncertainty in the predictive model are critical. This contribution develops predictive models for the tensile breakout capacity of fastening systems in concrete using the Gaussian Process Regression (GPR) and the Support Vector Regression (SVR) machine learning (ML) algorithms. The models were developed utilising a set of 864 experimental anchor tests. The efficiency of the developed models is assessed by statistical comparison to the state-of-practice semi-empirical predictive model, which is embedded in international design standards. Furthermore, the algorithms were evaluated based on a newly introduced Model Explainability concept based on Analogous Rational and Mechanical phenomena (MEARM). Finally, a discussion is provided regarding the developed ML models' suitability for use as General Probabilistic Models in a reliability framework.

5.
PeerJ ; 4: e1895, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27069822

RESUMO

Herman Melville's novel Moby Dick was inspired by historical instances in which large sperm whales (Physeter macrocephalus L.) sank 19th century whaling ships by ramming them with their foreheads. The immense forehead of sperm whales is possibly the largest, and one of the strangest, anatomical structures in the animal kingdom. It contains two large oil-filled compartments, known as the "spermaceti organ" and "junk," that constitute up to one-quarter of body mass and extend one-third of the total length of the whale. Recognized as playing an important role in echolocation, previous studies have also attributed the complex structural configuration of the spermaceti organ and junk to acoustic sexual selection, acoustic prey debilitation, buoyancy control, and aggressive ramming. Of these additional suggested functions, ramming remains the most controversial, and the potential mechanical roles of the structural components of the spermaceti organ and junk in ramming remain untested. Here we explore the aggressive ramming hypothesis using a novel combination of structural engineering principles and probabilistic simulation to determine if the unique structure of the junk significantly reduces stress in the skull during quasi-static impact. Our analyses indicate that the connective tissue partitions in the junk reduce von Mises stresses across the skull and that the load-redistribution functionality of the former is insensitive to moderate variation in tissue material parameters, the thickness of the partitions, and variations in the location and angle of the applied load. Absence of the connective tissue partitions increases skull stresses, particularly in the rostral aspect of the upper jaw, further hinting of the important role the architecture of the junk may play in ramming events. Our study also found that impact loads on the spermaceti organ generate lower skull stresses than an impact on the junk. Nevertheless, whilst an impact on the spermaceti organ would reduce skull stresses, it would also cause high compressive stresses on the anterior aspect of the organ and the connective tissue case, possibly making these structures more prone to failure. This outcome, coupled with the facts that the spermaceti organ houses sensitive and essential sonar producing structures and the rostral portion of junk, rather than the spermaceti organ, is frequently a site of significant scarring in mature males suggest that whales avoid impact with the spermaceti organ. Although the unique structure of the junk certainly serves multiple functions, our results are consistent with the hypothesis that the structure also evolved to function as a massive battering ram during male-male competition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...