Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869058

RESUMO

Colorimetric assays in which the color of a solution changes in the presence of an input provide a simple and inexpensive way to monitor experimental readouts. In this study we used in vitro selection to identify a self-phosphorylating kinase deoxyribozyme that produces a colorimetric signal by converting the colorless substrate pNPP into the yellow product pNP. The minimized catalytic core, sequence requirements, secondary structure, and buffer requirements of this deoxyribozyme, which we named Apollon, were characterized using a variety of techniques including reselection experiments, high-throughput sequencing, comparative analysis, biochemical activity assays, and NMR. A bimolecular version of Apollon catalyzed multiple turnover phosphorylation and amplified the colorimetric signal. Engineered versions of Apollon could detect oligonucleotides with specific sequences as well as several different types of nucleases in homogenous assays that can be performed in a single tube without the need for washes or purifications. We anticipate that Apollon will be particularly useful to reduce costs in high-throughput screens and for applications in which specialized equipment is not available.

2.
Nucleic Acids Res ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860424

RESUMO

Fluorescence facilitates the detection, visualization, and tracking of molecules with high sensitivity and specificity. A functional DNA molecule that generates a robust fluorescent signal would offer significant advantages for many applications compared to intrinsically fluorescent proteins, which are expensive and labor intensive to synthesize, and fluorescent RNA aptamers, which are unstable under most conditions. Here, we describe a novel deoxyriboyzme that rapidly and efficiently generates a stable fluorescent product using a readily available coumarin substrate. An engineered version can detect picomolar concentrations of ribonucleases in a simple homogenous assay, and was used to rapidly identify novel inhibitors of the SARS-CoV-2 ribonuclease Nsp15 in a high-throughput screen. Our work adds an important new component to the toolkit of functional DNA parts, and also demonstrates how catalytic DNA motifs can be used to solve real-world problems.

3.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396918

RESUMO

The structure and biochemical properties of protease inhibitors from the thyropin family are poorly understood in parasites and pathogens. Here, we introduce a novel family member, Ir-thyropin (IrThy), which is secreted in the saliva of Ixodes ricinus ticks, vectors of Lyme borreliosis and tick-borne encephalitis. The IrThy molecule consists of two consecutive thyroglobulin type-1 (Tg1) domains with an unusual disulfide pattern. Recombinant IrThy was found to inhibit human host-derived cathepsin proteases with a high specificity for cathepsins V, K, and L among a wide range of screened cathepsins exhibiting diverse endo- and exopeptidase activities. Both Tg1 domains displayed inhibitory activities, but with distinct specificity profiles. We determined the spatial structure of one of the Tg1 domains by solution NMR spectroscopy and described its reactive center to elucidate the unique inhibitory specificity. Furthermore, we found that the inhibitory potency of IrThy was modulated in a complex manner by various glycosaminoglycans from host tissues. IrThy was additionally regulated by pH and proteolytic degradation. This study provides a comprehensive structure-function characterization of IrThy-the first investigated thyropin of parasite origin-and suggests its potential role in host-parasite interactions at the tick bite site.


Assuntos
Ixodes , Saliva , Animais , Humanos , Saliva/metabolismo , Cisteína , Glicosaminoglicanos , Catepsinas/metabolismo , Ixodes/metabolismo , Espectroscopia de Ressonância Magnética
4.
Nucleic Acids Res ; 51(18): 10011-10025, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37615563

RESUMO

Eukaryotic transcription is dependent on specific histone modifications. Their recognition by chromatin readers triggers complex processes relying on the coordinated association of transcription regulatory factors. Although various modification states of a particular histone residue often lead to differential outcomes, it is not entirely clear how they are discriminated. Moreover, the contribution of intrinsically disordered regions outside of the specialized reader domains to nucleosome binding remains unexplored. Here, we report the structures of a PWWP domain from transcriptional coactivator LEDGF in complex with the H3K36 di- and trimethylated nucleosome, indicating that both methylation marks are recognized by PWWP in a highly conserved manner. We identify a unique secondary interaction site for the PWWP domain at the interface between the acidic patch and nucleosomal DNA that might contribute to an H3K36-methylation independent role of LEDGF. We reveal DNA interacting motifs in the intrinsically disordered region of LEDGF that discriminate between the intra- or extranucleosomal DNA but remain dynamic in the context of dinucleosomes. The interplay between the LEDGF H3K36-methylation reader and protein binding module mediated by multivalent interactions of the intrinsically disordered linker with chromatin might help direct the elongation machinery to the vicinity of RNA polymerase II, thereby facilitating productive elongation.

5.
RSC Med Chem ; 14(1): 144-153, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36760748

RESUMO

The development of highly active and selective enzyme inhibitors is one of the priorities of medicinal chemistry. Typically, various high-throughput screening methods are used to find lead compounds from a large pool of synthetic compounds, and these are further elaborated and structurally refined to achieve the desired properties. In an effort to streamline this complex and laborious process, new selection strategies based on different principles have recently emerged as an alternative. Herein, we compare three such selection strategies with the aim of identifying potent and selective inhibitors of human carbonic anhydrase II. All three approaches, in situ click chemistry, phage-display libraries and synthetic peptide libraries, led to the identification of more potent inhibitors when compared to the parent compounds. In addition, one of the inhibitor-peptide conjugates identified from the phage libraries showed greater than 100-fold selectivity for the enzyme isoform used for the compound selection. In an effort to rationalize the binding properties of the conjugates, we performed detailed crystallographic and NMR structural analysis, which revealed the structural basis of the compound affinity towards the enzyme and led to the identification of a novel exosite that could be utilized in the development of isoform specific inhibitors.

6.
Nucleic Acids Res ; 50(18): 10436-10448, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36155818

RESUMO

Covalent DNA interstrand crosslinks are toxic DNA damage lesions that block the replication machinery that can cause a genomic instability. Ubiquitous abasic DNA sites are particularly susceptible to spontaneous cross-linking with a base from the opposite DNA strand. Detection of a crosslink induces the DNA helicase ubiquitination that recruits NEIL3, a DNA glycosylase responsible for the lesion removal. NEIL3 utilizes several zinc finger domains indispensable for its catalytic NEI domain repairing activity. They recruit NEIL3 to the repair site and bind the single-stranded DNA. However, the molecular mechanism underlying their roles in the repair process is unknown. Here, we report the structure of the tandem zinc-finger GRF domain of NEIL3 and reveal the molecular details of its interaction with DNA. Our biochemical data indicate the preferential binding of the GRF domain to the replication fork. In addition, we obtained a structure for the catalytic NEI domain in complex with the DNA reaction intermediate that allowed us to construct and validate a model for the interplay between the NEI and GRF domains in the recognition of an interstrand cross-link. Our results suggest a mechanism for recognition of the DNA replication X-structure by NEIL3, a key step in the interstrand cross-link repair.


Assuntos
Reparo do DNA , Endodesoxirribonucleases/metabolismo , DNA/química , Dano ao DNA , DNA Glicosilases/metabolismo , DNA Helicases/metabolismo , DNA de Cadeia Simples , Zinco
7.
Protein Sci ; 31(5): e4287, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35481640

RESUMO

Transcription factor p53 protects cells against tumorigenesis when subjected to various cellular stresses. Under these conditions, p53 interacts with transcription factor Forkhead box O (FOXO) 4, thereby inducing cellular senescence by upregulating the transcription of senescence-associated protein p21. However, the structural details of this interaction remain unclear. Here, we characterize the interaction between p53 and FOXO4 by NMR, chemical cross-linking, and analytical ultracentrifugation. Our results reveal that the interaction between p53 TAD and the FOXO4 Forkhead domain is essential for the overall stability of the p53:FOXO4 complex. Furthermore, contacts involving the N-terminal segment of FOXO4, the C-terminal negative regulatory domain of p53 and the DNA-binding domains of both proteins stabilize the complex, whose formation blocks p53 binding to DNA but without affecting the DNA-binding properties of FOXO4. Therefore, our structural findings may help to understand the intertwined functions of p53 and FOXO4 in cellular homeostasis, longevity, and stress response.


Assuntos
Fatores de Transcrição Forkhead , Proteína Supressora de Tumor p53 , Proteínas de Ciclo Celular/metabolismo , DNA/química , Fatores de Transcrição Forkhead/química , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Ligação Proteica , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
8.
Science ; 374(6571): 1113-1121, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34822292

RESUMO

During eukaryotic transcription elongation, RNA polymerase II (RNAP2) is regulated by a chorus of factors. Here, we identified a common binary interaction module consisting of TFIIS N-terminal domains (TNDs) and natively unstructured TND-interacting motifs (TIMs). This module was conserved among the elongation machinery and linked complexes including transcription factor TFIIS, Mediator, super elongation complex, elongin, IWS1, SPT6, PP1-PNUTS phosphatase, H3K36me3 readers, and other factors. Using nuclear magnetic resonance, live-cell microscopy, and mass spectrometry, we revealed the structural basis for these interactions and found that TND-TIM sequences were necessary and sufficient to induce strong and specific colocalization in the crowded nuclear environment. Disruption of a single TIM in IWS1 induced robust changes in gene expression and RNAP2 elongation dynamics, which underscores the functional importance of TND-TIM surfaces for transcription elongation.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , RNA Polimerase II/metabolismo , Proteínas de Ligação a RNA/química , Elongação da Transcrição Genética , Fatores de Transcrição/química , Fatores de Elongação da Transcrição/química , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas/genética , Mapas de Interação de Proteínas , RNA Polimerase II/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/metabolismo
9.
Protein Sci ; 30(5): 1022-1034, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33739538

RESUMO

The wide variety of protein structures and functions results from the diverse properties of the 20 canonical amino acids. The generally accepted hypothesis is that early protein evolution was associated with enrichment of a primordial alphabet, thereby enabling increased protein catalytic efficiencies and functional diversification. Aromatic amino acids were likely among the last additions to genetic code. The main objective of this study was to test whether enzyme catalysis can occur without the aromatic residues (aromatics) by studying the structure and function of dephospho-CoA kinase (DPCK) following aromatic residue depletion. We designed two variants of a putative DPCK from Aquifex aeolicus by substituting (a) Tyr, Phe and Trp or (b) all aromatics (including His). Their structural characterization indicates that substituting the aromatics does not markedly alter their secondary structures but does significantly loosen their side chain packing and increase their sizes. Both variants still possess ATPase activity, although with 150-300 times lower efficiency in comparison with the wild-type phosphotransferase activity. The transfer of the phosphate group to the dephospho-CoA substrate becomes heavily uncoupled and only the His-containing variant is still able to perform the phosphotransferase reaction. These data support the hypothesis that proteins in the early stages of life could support catalytic activities, albeit with low efficiencies. An observed significant contraction upon ligand binding is likely important for appropriate organization of the active site. Formation of firm hydrophobic cores, which enable the assembly of stably structured active sites, is suggested to provide a selective advantage for adding the aromatic residues.


Assuntos
Proteínas de Bactérias/química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Substituição de Aminoácidos , Aquifex/enzimologia , Aquifex/genética , Proteínas de Bactérias/genética , Catálise , Domínio Catalítico , Mutagênese Sítio-Dirigida , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Estrutura Secundária de Proteína
10.
Nucleic Acids Res ; 49(4): 1816-1827, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33544841

RESUMO

G-quadruplexes are noncanonical nucleic acid structures formed by stacked guanine tetrads. They are capable of a range of functions and thought to play widespread biological roles. This diversity raises an important question: what determines the biochemical specificity of G-quadruplex structures? The answer is particularly important from the perspective of biological regulation because genomes can contain hundreds of thousands of G-quadruplexes with a range of functions. Here we analyze the specificity of each sequence in a 496-member library of variants of a reference G-quadruplex with respect to five functions. Our analysis shows that the sequence requirements of G-quadruplexes with these functions are different from one another, with some mutations altering biochemical specificity by orders of magnitude. Mutations in tetrads have larger effects than mutations in loops, and changes in specificity are correlated with changes in multimeric state. To complement our biochemical data we determined the solution structure of a monomeric G-quadruplex from the library. The stacked and accessible tetrads rationalize why monomers tend to promote a model peroxidase reaction and generate fluorescence. Our experiments support a model in which the sequence requirements of G-quadruplexes with different functions are overlapping but distinct. This has implications for biological regulation, bioinformatics, and drug design.


Assuntos
Quadruplex G , Sequência de Bases , DNA/química , Fluorescência , Guanosina Trifosfato/química , Modelos Moleculares , Mutação , Peroxidases/química
11.
Structure ; 28(12): 1288-1299.e7, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32946742

RESUMO

Dimerization of many eukaryotic transcription regulatory factors is critical for their function. Regulatory role of an epigenetic reader lens epithelium-derived growth factor/p75 (LEDGF/p75) requires at least two copies of this protein to overcome the nucleosome-induced barrier to transcription elongation. Moreover, various LEDGF/p75 binding partners are enriched for dimeric features, further underscoring the functional regulatory role of LEDGF/p75 dimerization. Here, we dissected the minimal dimerization region in the C-terminal part of LEDGF/p75 and, using paramagnetic NMR spectroscopy, identified the key molecular contacts that helped to refine the solution structure of the dimer. The LEDGF/p75 dimeric assembly is stabilized by domain swapping within the integrase binding domain and additional electrostatic "stapling" of the negatively charged α helix formed in the intrinsically disordered C-terminal region. We validated the dimerization mechanism using structure-inspired dimerization defective LEDGF/p75 variants and chemical crosslinking coupled to mass spectrometry. We also show how dimerization might affect the LEDGF/p75 interactome.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/química , Multimerização Proteica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Domínios Proteicos , Eletricidade Estática
12.
Biochim Biophys Acta Biomembr ; 1862(9): 183310, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32333856

RESUMO

Two distinct conformers of the adenylate cyclase toxin (CyaA) appear to accomplish its two parallel activities within target cell membrane. The translocating conformer would deliver the N-terminal adenylyl cyclase (AC) enzyme domain across plasma membrane into cytosol of cells, while the pore precursor conformer would assemble into oligomeric cation-selective pores and permeabilize cellular membrane. Both toxin activities then involve a membrane-interacting 'AC-to-Hly-linking segment' (residues 400 to 500). Here, we report the NMR structure of the corresponding CyaA411-490 polypeptide in dodecylphosphocholine micelles and show that it consists of two α-helices linked by an unrestrained loop. The N-terminal α-helix (Gly418 to His439) remained solvent accessible, while the C-terminal α-helix (His457 to Phe485) was fully enclosed within detergent micelles. CyaA411-490 weakly bound Ca2+ ions (apparent KD 2.6 mM) and permeabilized negatively charged lipid vesicles. At high concentrations (10 µM) the CyaA411-490 polypeptide formed stable conductance units in artificial lipid bilayers with applied voltage, suggesting its possible transmembrane orientation in the membrane-inserted toxin. Mutagenesis revealed that two clusters of negatively charged residues within the 'AC-to-Hly-linking segment' (Glu419 to Glu432 and Asp445 to Glu448) regulate the balance between the AC domain translocating and pore-forming capacities of CyaA in function of calcium concentration.


Assuntos
Toxina Adenilato Ciclase/química , Transporte Biológico/genética , Bordetella pertussis/química , Bicamadas Lipídicas/química , Toxina Adenilato Ciclase/metabolismo , Bordetella pertussis/metabolismo , Cálcio/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/genética , AMP Cíclico/metabolismo , Hemólise/genética , Humanos , Bicamadas Lipídicas/metabolismo , Conformação Proteica em alfa-Hélice/genética
13.
EMBO J ; 39(10): e102935, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-31930742

RESUMO

Magnesium homeostasis is essential for life and depends on magnesium transporters, whose activity and ion selectivity need to be tightly controlled. Rhomboid intramembrane proteases pervade the prokaryotic kingdom, but their functions are largely elusive. Using proteomics, we find that Bacillus subtilis rhomboid protease YqgP interacts with the membrane-bound ATP-dependent processive metalloprotease FtsH and cleaves MgtE, the major high-affinity magnesium transporter in B. subtilis. MgtE cleavage by YqgP is potentiated in conditions of low magnesium and high manganese or zinc, thereby protecting B. subtilis from Mn2+ /Zn2+ toxicity. The N-terminal cytosolic domain of YqgP binds Mn2+ and Zn2+ ions and facilitates MgtE cleavage. Independently of its intrinsic protease activity, YqgP acts as a substrate adaptor for FtsH, a function that is necessary for degradation of MgtE. YqgP thus unites protease and pseudoprotease function, hinting at the evolutionary origin of rhomboid pseudoproteases such as Derlins that are intimately involved in eukaryotic ER-associated degradation (ERAD). Conceptually, the YqgP-FtsH system we describe here is analogous to a primordial form of "ERAD" in bacteria and exemplifies an ancestral function of rhomboid-superfamily proteins.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Bacillus subtilis/metabolismo , Endopeptidases/metabolismo , Proteínas de Membrana/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteômica/métodos
14.
FEBS J ; 287(8): 1626-1644, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31623019

RESUMO

Apoptosis signal-regulating kinase 1 (ASK1) is a ubiquitously expressed mitogen-activated protein kinase kinase kinase 5, which mediates various stress signals including oxidative stress. The catalytic activity of ASK1 is tightly controlled by oligomerization and binding of several cofactors. Among these cofactors, thioredoxin stands out as the most important ASK1 inhibitor, but only the reduced form of thioredoxin inhibits ASK1 by direct binding to its N-terminal domain. In addition, oxidation-driven thioredoxin dissociation is the key event in oxidative stress-mediated ASK1 activation. However, the structural mechanism of ASK1 regulation by thioredoxin remains unknown. Here, we report the characterization of the ASK1 domain responsible for thioredoxin binding and its complex using NMR spectroscopy and chemical cross-linking, thus providing the molecular basis for ASK1: thioredoxin complex dissociation under oxidative stress conditions. Our data reveal that the N-terminal domain of ASK1 adopts a fold resembling the thioredoxin structure while retaining substantial conformational plasticity at the thioredoxin-binding interface. Although oxidative stress induces relatively moderate structural changes in thioredoxin, the formation of intramolecular disulfide bridges leads to a considerable conformational rearrangement of the thioredoxin-binding interface on ASK1. Moreover, the cysteine residue at position 250 of ASK1 is the key element of this molecular switch. Finally, our results show that the redox-active site of thioredoxin is directly involved in ASK1 binding that is modulated by oxidative stress, thereby identifying a key target for the structure-based drug design.


Assuntos
Apoptose , MAP Quinase Quinase Quinase 5/metabolismo , Estresse Oxidativo , Tiorredoxinas/química , Tiorredoxinas/metabolismo , Sítios de Ligação , Humanos , MAP Quinase Quinase Quinase 5/antagonistas & inibidores , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Oxirredução , Inibidores de Proteínas Quinases/farmacologia
15.
FEMS Microbiol Lett ; 366(18)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31778539

RESUMO

A specific technique of nuclear magnetic resonance (NMR) spectroscopy, filter-exchange spectroscopy (FEXSY), was employed to investigate water transport through the plasma membrane in intact yeast cells. This technique allows water transport to be monitored directly, thus avoiding the necessity to subject the cells to any rapid change in the external conditions, e.g. osmotic shock. We established a sample preparation protocol, a data analysis procedure and verified the applicability of FEXSY experiments. We recorded the exchange rates in the temperature range 10-40°C for Saccharomyces cerevisiae. The resulting activation energy of 29 kJ mol-1 supports the hypothesis that water exchange is facilitated by water channels-aquaporins. Furthermore, we measured for the first time water exchange rates in three other phylogenetically unrelated yeast species (Schizosaccharomyces pombe, Candida albicans and Zygosaccharomyces rouxii) and observed remarkably different water exchange rates between these species. Findings of our work contribute to a better understanding of as fundamental a cell process as the control of water transport through the plasma membrane.


Assuntos
Candida albicans/metabolismo , Membrana Celular/metabolismo , Schizosaccharomyces/metabolismo , Água/metabolismo , Zygosaccharomyces/metabolismo , Aquaporinas/metabolismo , Transporte Biológico , Cinética , Espectroscopia de Ressonância Magnética , Temperatura , Termodinâmica
16.
J Am Chem Soc ; 141(42): 16817-16828, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31550880

RESUMO

Electrostatic interactions play important roles in the functional mechanisms exploited by intrinsically disordered proteins (IDPs). The atomic resolution description of long-range and local structural propensities that can both be crucial for the function of highly charged IDPs presents significant experimental challenges. Here, we investigate the conformational behavior of the δ subunit of RNA polymerase from Bacillus subtilis whose unfolded domain is highly charged, with 7 positively charged amino acids followed by 51 acidic amino acids. Using a specifically designed analytical strategy, we identify transient contacts between the two regions using a combination of NMR paramagnetic relaxation enhancements, residual dipolar couplings (RDCs), chemical shifts, and small-angle scattering. This strategy allows the resolution of long-range and local ensemble averaged structural contributions to the experimental RDCs, and reveals that the negatively charged segment folds back onto the positively charged strand, compacting the conformational sampling of the protein while remaining highly flexible in solution. Mutation of the positively charged region abrogates the long-range contact, leaving the disordered domain in an extended conformation, possibly due to local repulsion of like-charges along the chain. Remarkably, in vitro studies show that this mutation also has a significant effect on transcription activity, and results in diminished cell fitness of the mutated bacteria in vivo. This study highlights the importance of accurately describing electrostatic interactions for understanding the functional mechanisms of IDPs.


Assuntos
Bacillus subtilis/enzimologia , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Eletricidade Estática , Sequência de Aminoácidos , Modelos Moleculares , Conformação Proteica
17.
ACS Chem Biol ; 14(9): 1951-1963, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31433157

RESUMO

G-Quadruplexes are noncanonical nucleic acid structures made up of stacked guanosine tetrads connected by short loops. They are frequently used building blocks in synthetic biology and thought to play widespread biological roles. Multimerization can change the functional properties of G-quadruplexes, and understanding the factors that modulate this process remains an important goal. Here, we report the discovery of a novel mechanism by which the formation of multimeric G-quadruplexes can be controlled using GTP. We show that GTP likely inhibits multimer formation by becoming incorporated into a tetrad in the monomeric form of the structure and define the sequence requirements of G-quadruplexes that form GTP-dependent structures. These experiments provide new insights into the small molecule control of G-quadruplex multimerization. They also suggest possible roles for GTP-dependent multimeric G-quadruplexes in both synthetic and natural biological systems.


Assuntos
DNA/metabolismo , Quadruplex G , Guanosina Trifosfato/metabolismo , Animais , Fenômenos Bioquímicos , DNA/genética , Humanos , Mutação , Pan troglodytes , Pongo
18.
Phys Chem Chem Phys ; 21(10): 5661-5673, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30794275

RESUMO

Transient and fuzzy intermolecular interactions are fundamental to many biological processes. Despite their importance, they are notoriously challenging to characterize. Effects induced by paramagnetic ligands in the NMR spectra of interacting biomolecules provide an opportunity to amplify subtle manifestations of weak intermolecular interactions observed for diamagnetic ligands. Here, we present an approach to characterizing dynamic interactions between a partially flexible dimeric protein, HIV-1 protease, and a metallacarborane-based ligand, a system for which data obtained by standard NMR approaches do not enable detailed structural interpretation. We show that for the case where the experimental data are significantly averaged to values close to zero the standard fitting of pseudocontact shifts cannot provide reliable structural information. We based our approach on generating a large ensemble of full atomic models, for which the experimental data can be predicted, ensemble averaged and finally compared to the experiment. We demonstrate that a combination of paramagnetic NMR experiments, quantum chemical calculations, and molecular dynamics simulations offers a route towards structural characterization of dynamic protein-ligand complexes.


Assuntos
Boranos/química , Protease de HIV/química , Metais/química , Simulação de Dinâmica Molecular , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Ligação Proteica , Conformação Proteica , Teoria Quântica
19.
Proc Natl Acad Sci U S A ; 115(30): E7053-E7062, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29997176

RESUMO

Lens epithelium-derived growth factor/p75 (LEDGF/p75, or PSIP1) is a transcriptional coactivator that tethers other proteins to gene bodies. The chromatin tethering function of LEDGF/p75 is hijacked by HIV integrase to ensure viral integration at sites of active transcription. LEDGF/p75 is also important for the development of mixed-lineage leukemia (MLL), where it tethers the MLL1 fusion complex at aberrant MLL targets, inducing malignant transformation. However, little is known about how the LEDGF/p75 protein interaction network is regulated. Here, we obtained solution structures of the complete interfaces between the LEDGF/p75 integrase binding domain (IBD) and its cellular binding partners and validated another binding partner, Mediator subunit 1 (MED1). We reveal that structurally conserved IBD-binding motifs (IBMs) on known LEDGF/p75 binding partners can be regulated by phosphorylation, permitting switching between low- and high-affinity states. Finally, we show that elimination of IBM phosphorylation sites on MLL1 disrupts the oncogenic potential of primary MLL1-rearranged leukemic cells. Our results demonstrate that kinase-dependent phosphorylation of MLL1 represents a previously unknown oncogenic dependency that may be harnessed in the treatment of MLL-rearranged leukemia.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Motivos de Aminoácidos , Linhagem Celular Tumoral , HIV/enzimologia , HIV/genética , Integrase de HIV/genética , Integrase de HIV/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Subunidade 1 do Complexo Mediador/genética , Subunidade 1 do Complexo Mediador/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Fosforilação/genética , Fatores de Transcrição/genética
20.
Phys Chem Chem Phys ; 20(18): 12664-12677, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29696277

RESUMO

Water molecules can interact with aromatic moieties using either their O-H bonds or their lone-pairs of electrons. In proteins, water-π interactions have been reported to occur with tryptophan and histidine residues, and dynamic exchange between O-Hπ hydrogen bonding and lone-pairπ interactions was suggested to take place, based on ab initio calculations. Here we used classical and QM/MM molecular dynamics simulations, complemented with an NMR study, to examine a specific water-indole interaction observed in the engrailed homeodomain and in its mutants. Our simulations indicate that the binding mode between water and indole can adapt to the potential created by the surrounding amino acids (and by the residues at the DNA surface in protein-DNA complexes), and support the model of dynamic switching between the O-Hπ hydrogen bonding and lone-pairπ binding modes.


Assuntos
Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Triptofano/metabolismo , Água/metabolismo , Animais , Drosophila , Proteínas de Drosophila , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Estrutura Molecular , Mutação , Ligação Proteica , Domínios Proteicos , Teoria Quântica , Fatores de Transcrição/química , Fatores de Transcrição/genética , Triptofano/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...