Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Mater ; 17(1)2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34753122

RESUMO

An injectable osteoconductive polyelectrolyte complex (PEC)-hydroxyapatite (HAP) formulation capable of controlled delivery of ciprofloxacin has been developed from a novel biodegradable PEC and antibiotic loaded nascent hydroxyapatite (n-HAP) for the treatment of osteomyelitis. A single source (chitosan) derived polyelectrolytes were complexedin situin the presence of n-HAP, pre-loaded with ciprofloxacin. The PEC-(n-HAP) nanoformulation (HPEC) was characterized by FT-IR, XRD, TGA and TEM analyses. HPEC combines functionalities of n-HAP (crystallinity and osteoconductivity) as well as PEC (biodegradable hydrophilic electrostatically bound macromolecular network) imparting better control over swelling and degradation kinetics favourable for drug release and transport of micronutrients. MTT assay and cytoskeleton staining (MG-63 cells) established cytocompatibility of HPEC. Early biomimetic mineralization of apatite was manifested under simulated physiological condition with a Ca/P of 1.23 (day 3) and 1.55 (day 6) complimented byin vitrobiomineralization of MG-63 and human osteosarcoma (HOS) cells in a week (Alizarin Red S staining), which was further validated by calcium quantification. Antibacterial efficacy of HPEC has been evaluated by delivery kinetics of ciprofloxacin and by disc diffusion method againstS. aureusandE. coli. The injectable system therefore possesses unique combination of functionalities: osteoconduction enriched with early biomineralization, antibacterial activity and is biodegradable; hence highly suitable for osteomyelitis treatment.


Assuntos
Durapatita , Osteomielite , Antibacterianos , Durapatita/uso terapêutico , Humanos , Osteomielite/tratamento farmacológico , Polieletrólitos , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Microb Pathog ; 157: 104967, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34015495

RESUMO

In an attempt to screen antagonistic microorganisms from marine environment for the management of bacterial pathogens in aquaculture, an isolate of actinomycete MCCB 110 was segregated based on its comparatively higher inhibitory property on Vibrio harveyi (MCCB 111) and profound luminescent inhibition. Based on the culture characteristics, cell wall fatty acid profile and the nucleotide sequence of the 16S rRNA gene (1495 bp), the isolate was identified as Nocardiopsis alba. Solvent extraction of the fermentation broth followed by TLC and HPLC analyses resulted in the isolation of a major fraction active against luminescent Vibrio harveyi. Partial characterization of this bioactive fraction based on spectroscopic data obtained from FT-IR, UV, MS-MS and 1H NMR analyses identified it as a substituted derivative of sterol, and was recognized to differ from those reportedly produced by the same genus. The fraction was not toxic to VERO cell line and shrimp haemocytes up to 1000 ppm tested. The study demonstrated the potential of the putative probiotic Nocardiopsis alba (MCCB 110) and its novel extra-cellular bioactive product in the management of Vibrio harveyi in aquaculture.


Assuntos
Actinobacteria , Vibrio , Actinomyces , Aquicultura , Nocardiopsis , RNA Ribossômico 16S/genética , Espectroscopia de Infravermelho com Transformada de Fourier , Esteróis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...