Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Parasit Dis ; 46(2): 384-394, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35692472

RESUMO

Lymphatic filariasis is one of the major diseases that belong to the category of neglected tropical illness. Filarial nematodes are the cause of the disease and are transmitted to humans via blood-feeding arthropod vectors. Drugs such as Albendazole, Ivermectin and diethylcarbamazine are administered either individually or in combination to overcome the progress of the lymphatic filariasis. These drugs have some minor side effects like temporary hair loss, dizziness, nausea etc. The filarial parasites have multifunctional proteins including the Glutathione-s-transferase (GST) enzyme. This study aims at the identification of a natural molecule that has the potential to bind with the GST enzyme, which plays a major role in detoxification of endogenous electrophilic compounds. Thus the binding interrupts the detoxification process within the filarial parasite, Brugia malayi. A medicinal plant Calotropis procera, owing to its anthelmintic properties was searched for the presence of potential phytocompounds. The phytocompounds were docked against the homology modeled GST enzyme using the MOE software. The results were screened and analyzed based on the Lipinski rule of 5. N-octanoate was the phytocompound obtained based on molecular docking, subjected to molecular dynamics. These results require further in vitro and in vivo validation to consider n-octanoate as a potential drug candidate for lymphatic filariasis treatment.

2.
Phytochem Rev ; : 1-28, 2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35095355

RESUMO

In the current global scenario, the world is under a serious dilemma due to the increasing human population, industrialization, and urbanization. The ever-increasing need for fuels and increasing nutritional problems have made a serious concern on the demand for nutrients and renewable and eco-friendly fuel sources. Currently, the use of fossil fuels is creating ecological and economic problems. Microalgae have been considered as a promising candidate for high-value metabolites and alternative renewable energy sources. Microalgae offer several advantages such as rapid growth rate, efficient land utilization, carbon dioxide sequestration, ability to cultivate in wastewater, and most importantly, they do not participate in the food crop versus energy crop dilemma or debate. An efficient microalgal biorefinery system for the production of lipids and subsequent byproduct for nutraceutical applications could well satisfy the need. But, the current microalgal cultivation systems for the production of lipids and nutraceuticals do not offer techno-economic feasibility together with energy and environmental sustainability. This review article has its main focus on the production of lipids and nutraceuticals from microalgae, covering the current strategies used for lipid production and the major high-value metabolites from microalgae and their nutraceutical importance. This review also provides insights on the future strategies for enhanced microalgal lipid production and subsequent utilization of microalgal biomass.

3.
Bioresour Technol ; 344(Pt B): 126406, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34826565

RESUMO

Microalgae are unicellular photosynthetic organisms capable of producing high-value metabolites like carbohydrates, lipids, proteins, polyunsaturated fatty acids, vitamins, pigments, and other high-value metabolites. Microalgal biomass gained more interest for the production of nutraceuticals, pharmaceuticals, therapeutics, food supplements, feed, biofuel, bio-fertilizers, etc. due to its high lipid and other high-value metabolite content. Microalgal biomass has the potential to convert trapped solar energy to organic materials and potential metabolites of nutraceutical and industrial interest. They have higher efficiency to fix carbon dioxide (CO2) and subsequently convert it into biomass and compounds of potential interest. However, to make microalgae a potential industrial candidate, cost-effective cultivation systems and harvesting methods for increasing biomass yield and reducing the cost of downstream processing have become extremely urgent and important. In this review, the current development in different microalgal cultivation systems and harvesting methods has been discussed.


Assuntos
Microalgas , Biocombustíveis , Biomassa , Dióxido de Carbono , Lipídeos
4.
Syst Microbiol Biomanuf ; 2(2): 369-379, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38624805

RESUMO

Microalgae are considered a rich source of high-value metabolites with an array of nutraceutical and pharmaceutical applications. Different strategies have been developed for cultivating microalgae at large-scale photobioreactors but high cost and low productivity are the major hurdles. Optimizing the composition of media for the cultivation of microalgae to induce biomass production and high-value metabolite accumulation has been considered as an important factor for sustainable product development. In this study, the effect of plant growth regulators together with basal microalgal cultivation medium on biomass, total lipid, and EPA production was studied using the Plackett-Burman model and Response surface methodology. The traditional one-factor-at-a-time optimization approach is laborious, time-consuming, and requires more experiments which makes the process and analysis more difficult. The Designed PB model was found to be significant for biomass (396 mg/L), lipid (254 mg/L), and EPA (5.6%) production with a P value < 0.05. The major objective of this study is to formulate a medium for EPA production without compromising the growth properties. Further, we had formulated a new media using RSM to achieve the goal and the significant variables selected were NaNO3, NaH2PO4, and IAA and was found to be significant with 16.72% EPA production with a biomass production of 893 mg/L with a P value < 0.05. The formulated medium can be used in large-scale cultivation systems which can enhance biomass production as well as the omega 3 fatty acid production in marine microalgae Nannochloropsis oceanica. Supplementary Information: The online version contains supplementary material available at 10.1007/s43393-021-00069-1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...