Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Pharm Des ; 13(24): 2507-18, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17692019

RESUMO

Recent work indicates that the expression of Eph and ephrin proteins is upregulated after injury in the central nervous system (CNS). Although to date, much of the interest in these protein families in the nervous system has been on their roles during development, their presence in the adult CNS at multiple time points after injury suggest that they play significant roles in key aspects of the nervous system's response to damage. Several fundamental features of Eph and ephrin biology, such as bidirectional signaling, promiscuity of ligand-receptor binding, and potential cis regulation of function, present challenges for the formulation of rational and effective Eph/ephrin based strategies for CNS axon regeneration. However, recent work that have identified specific functions for individual Ephs and ephrins in injury-induced phenomena such as axon sprouting, cellular remodeling, and scar formation has begun to tease apart their contributions and may provide a number of potential entry points for beneficial therapeutic intervention.


Assuntos
Lesões Encefálicas/terapia , Efrinas/antagonistas & inibidores , Efrinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Traumatismos da Medula Espinal/terapia , Animais , Lesões Encefálicas/metabolismo , Humanos , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/fisiologia , Traumatismos da Medula Espinal/metabolismo
2.
Semin Cell Dev Biol ; 15(1): 125-36, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15036215

RESUMO

The eye is a highly specialized structure that gathers and converts light information into neuronal signals. These signals are relayed along axons of retinal ganglion cells (RGCs) to visual centers in the brain for processing. In this review, we discuss the pathfinding tasks RGC axons face during development and the molecular mechanisms known to be involved. The data at hand support the presence of multiple axon guidance mechanisms concentrically organized around the optic nerve head, each of which appears to involve both growth-promoting and growth-inhibitory guidance molecules. Together, these strategies ensure proper optic nerve formation and establish the anatomical pathway for faithful transmission of information between the retina and the brain.


Assuntos
Axônios/fisiologia , Nervo Óptico/embriologia , Retina/embriologia , Células Ganglionares da Retina/citologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Citoesqueleto/fisiologia , Efrinas/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Genes de Imunoglobulinas/fisiologia , Cones de Crescimento/fisiologia , Humanos , Modelos Biológicos , Mutação , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Netrina-1 , Disco Óptico/citologia , Disco Óptico/embriologia , Nervo Óptico/citologia , Nervo Óptico/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/fisiologia , Receptores da Família Eph/genética , Receptores da Família Eph/fisiologia , Retina/citologia , Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Displasia Septo-Óptica/etiologia , Displasia Septo-Óptica/genética , Proteínas Supressoras de Tumor
3.
Br J Ophthalmol ; 87(5): 639-45, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12714414

RESUMO

In the past several years, a great deal has been learnt about the molecular basis through which specific neural pathways in the visual system are established during embryonic development. This review provides a framework for understanding the principles of retinal ganglion cell axon guidance, and introduces some of the families of axon guidance molecules involved. In addition, the potential relevance of retinal axon guidance to human visual developmental disorders, and to retinal axon regeneration, is discussed.


Assuntos
Proteínas de Drosophila , Olho/inervação , Vias Neurais , Células Ganglionares da Retina , Córtex Visual/embriologia , Axônios , Criança , Sulfatos de Condroitina/metabolismo , Deficiências do Desenvolvimento/etiologia , Efrinas/metabolismo , Olho/embriologia , Fibronectinas/metabolismo , Humanos , Fatores de Crescimento Neural/metabolismo , Regeneração Nervosa/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Netrina-1 , Vias Neurais/metabolismo , Nucleotídeos Cíclicos/metabolismo , Disco Óptico/anatomia & histologia , Disco Óptico/embriologia , Receptores de Droga/metabolismo , Células Ganglionares da Retina/metabolismo , Semaforinas/metabolismo , Colículos Superiores/embriologia , Proteínas Supressoras de Tumor
4.
Development ; 128(15): 3041-8, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11532925

RESUMO

Axon pathfinding relies on cellular signaling mediated by growth cone receptor proteins responding to ligands, or guidance cues, in the environment. Eph proteins are a family of receptor tyrosine kinases that govern axon pathway development, including retinal axon projections to CNS targets. Recent examination of EphB mutant mice, however, has shown that axon pathfinding within the retina to the optic disc is dependent on EphB receptors, but independent of their kinase activity. Here we show a function for EphB1, B2 and B3 receptor extracellular domains (ECDs) in inhibiting mouse retinal axons when presented either as substratum-bound proteins or as soluble proteins directly applied to growth cones via micropipettes. In substratum choice assays, retinal axons tended to avoid EphB-ECDs, while time-lapse microscopy showed that exposure to soluble EphB-ECD led to growth cone collapse or other inhibitory responses. These results demonstrate that, in addition to the conventional role of Eph proteins signaling as receptors, EphB receptor ECDs can also function in the opposite role as guidance cues to alter axon behavior. Furthermore, the data support a model in which dorsal retinal ganglion cell axons heading to the optic disc encounter a gradient of inhibitory EphB proteins which helps maintain tight axon fasciculation and prevents aberrant axon growth into ventral retina. In conclusion, development of neuronal connectivity may involve the combined activity of Eph proteins serving as guidance receptors and as axon guidance cues.


Assuntos
Neuritos/fisiologia , Receptores Proteína Tirosina Quinases/fisiologia , Retina/citologia , Animais , Movimento Celular/fisiologia , Laminina , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Disco Óptico/citologia , Estrutura Terciária de Proteína , Receptor EphB4 , Receptores da Família Eph , Proteínas Recombinantes de Fusão , Transdução de Sinais
5.
Development ; 127(5): 969-80, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10662636

RESUMO

GAP-43 is an abundant intracellular growth cone protein that can serve as a PKC substrate and regulate calmodulin availability. In mice with targeted disruption of the GAP-43 gene, retinal ganglion cell (RGC) axons fail to progress normally from the optic chiasm into the optic tracts. The underlying cause is unknown but, in principle, can result from either the disruption of guidance mechanisms that mediate axon exit from the midline chiasm region or defects in growth cone signaling required for entry into the lateral diencephalic wall to form the optic tracts. Results here show that, compared to wild-type RGC axons, GAP-43-deficient axons exhibit reduced growth in the presence of lateral diencephalon cell membranes. Reduced growth is not observed when GAP-43-deficient axons are cultured with optic chiasm, cortical, or dorsal midbrain cells. Lateral diencephalon cell conditioned medium inhibits growth of both wild-type and GAP-43-deficient axons to a similar extent and does not affect GAP-43-deficient axons more so. Removal or transplant replacement of the lateral diencephalon optic tract entry zone in GAP-43-deficient embryo preparations results in robust RGC axon exit from the chiasm. Together these data show that RGC axon exit from the midline region does not require GAP-43 function. Instead, GAP-43 appears to mediate RGC axon interaction with guidance cues in the lateral diencephalic wall, suggesting possible involvement of PKC and calmodulin signaling during optic tract formation.


Assuntos
Axônios/fisiologia , Diencéfalo/embriologia , Proteína GAP-43/fisiologia , Neurônios/fisiologia , Quiasma Óptico/embriologia , Retina/embriologia , Células Ganglionares da Retina/fisiologia , Vias Visuais/embriologia , Animais , Membrana Celular/fisiologia , Células Cultivadas , Meios de Cultivo Condicionados , Diencéfalo/citologia , Éxons , Transplante de Tecido Fetal/fisiologia , Proteína GAP-43/deficiência , Proteína GAP-43/genética , Hipotálamo/embriologia , Camundongos , Camundongos Knockout , Neuritos/fisiologia , Neurônios/citologia , Retina/citologia , Retina/transplante , Deleção de Sequência , Transdução de Sinais , Vias Visuais/citologia
6.
Development ; 127(6): 1231-41, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10683176

RESUMO

Optic nerve formation requires precise retinal ganglion cell (RGC) axon pathfinding within the retina to the optic disc, the molecular basis of which is not well understood. At CNS targets, interactions between Eph receptor tyrosine kinases on RGC axons and ephrin ligands on target cells have been implicated in formation of topographic maps. However, studies in chick and mouse have shown that both Eph receptors and ephrins are also expressed within the retina itself, raising the possibility that this receptor-ligand family mediates aspects of retinal development. Here, we more fully document the presence of specific EphB receptors and B-ephrins in embryonic mouse retina and provide evidence that EphB receptors are involved in RGC axon pathfinding to the optic disc. We find that as RGC axons begin this pathfinding process, EphB receptors are uniformly expressed along the dorsal-ventral retinal axis. This is in contrast to the previously reported high ventral-low dorsal gradient of EphB receptors later in development when RGC axons map to CNS targets. We show that mice lacking both EphB2 and EphB3 receptor tyrosine kinases, but not each alone, exhibit increased frequency of RGC axon guidance errors to the optic disc. In these animals, major aspects of retinal development and cellular organization appear normal, as do the expression of other RGC guidance cues netrin, DCC, and L1. Unexpectedly, errors occur in dorsal but not ventral retina despite early uniform or later high ventral expression of EphB2 and EphB3. Furthermore, embryos lacking EphB3 and the kinase domain of EphB2 do not show increased errors, consistent with a guidance role for the EphB2 extracellular domain. Thus, while Eph kinase function is involved in RGC axon mapping in the brain, RGC axon pathfinding within the retina is partially mediated by EphB receptors acting in a kinase-independent manner.


Assuntos
Disco Óptico/embriologia , Disco Óptico/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Retina/embriologia , Retina/metabolismo , Vias Visuais/embriologia , Vias Visuais/metabolismo , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Óperon Lac , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores Proteína Tirosina Quinases/genética , Receptor EphB4 , Receptores da Família Eph , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/ultraestrutura
7.
J Neurosci ; 19(22): 9900-12, 1999 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-10559399

RESUMO

Optic nerve formation in mouse involves interactions between netrin-1 at the optic disk and the netrin-1 receptor DCC (deleted in colorectal cancer) expressed on retinal ganglion cell (RGC) axons. Deficiency in either protein causes RGC pathfinding defects at the disk leading to optic nerve hypoplasia (). Here we show that further along the visual pathway, RGC axons in netrin-1- or DCC-deficient mice grow in unusually angular trajectories within the ventral hypothalamus. In heterozygous Sey(neu) mice that also have a small optic nerve, RGC axon trajectories appear normal, indicating that the altered RGC axon trajectories in netrin-1 and DCC mutants are not secondarily caused by optic nerve hypoplasia. Intrinsic hypothalamic patterning is also affected in netrin-1 and DCC mutants, including a severe reduction in the posterior axon projections of gonadotropin-releasing hormone neurons. In addition to axon pathway defects, antidiuretic hormone and oxytocin neurons are found ectopically in the ventromedial hypothalamus, apparently no longer confined to the supraoptic nucleus in mutants. In summary, netrin-1 and DCC, presumably via direct interactions, govern both axon pathway formation and neuronal position during hypothalamic development, and loss of netrin-1 or DCC function affects both visual and neuroendocrine systems. Netrin protein localization also indicates that unlike in more caudal CNS, guidance about the hypothalamic ventral midline does not require midline expression of netrin.


Assuntos
Moléculas de Adesão Celular/fisiologia , Proteínas de Homeodomínio , Hipotálamo/fisiologia , Fatores de Crescimento Neural/fisiologia , Neurônios/fisiologia , Nervo Óptico/fisiologia , Receptores de Superfície Celular/fisiologia , Células Ganglionares da Retina/fisiologia , Proteínas Supressoras de Tumor , Vias Visuais/fisiologia , Hormônio Adrenocorticotrópico/sangue , Animais , Animais Recém-Nascidos , Transporte Axonal , Axônios/fisiologia , Moléculas de Adesão Celular/genética , Receptor DCC , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Desenvolvimento Embrionário e Fetal , Proteínas do Olho , Feminino , Proteína GAP-43/deficiência , Proteína GAP-43/genética , Proteína GAP-43/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Genes DCC , Hormônio do Crescimento/sangue , Hipotálamo/anormalidades , Hipotálamo/embriologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Crescimento Neural/deficiência , Fatores de Crescimento Neural/genética , Receptores de Netrina , Netrina-1 , Neurônios/patologia , Quiasma Óptico/embriologia , Quiasma Óptico/fisiologia , Nervo Óptico/anormalidades , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Proteínas Repressoras , Células Ganglionares da Retina/patologia , Vias Visuais/embriologia
8.
J Comp Neurol ; 403(3): 346-58, 1999 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-9886035

RESUMO

In mammals, some axons from each retina cross at the optic chiasm, whereas others do not. Although several loci have been identified within the chiasmatic region that appear to provide guidance cues to the retinal axons, the underlying molecular mechanisms that regulate this process are poorly understood. Here we investigate whether the earliest retinal axon trajectories and a cellular population (CD44 and stage-specific embryonic antigen 1 [SSEA] neurons), previously implicated in directing axon growth in the developing chiasm (reviewed in Mason and Sretavan [1997] Curr. Op. Neurobiol. 7:647-653), correlate with the expression patterns of several regulatory genes (BF-1, BF-2, Dlx-2, Nkx-2.1, Nkx-2.2, and Shh). These studies demonstrate that gene expression patterns in the chiasmatic region reflect the longitudinal subdivisions of the forebrain in that axon tracts in this region generally are aligned parallel to these subdivisions. Moreover, zones defined by overlapping domains of regulatory gene expression coincide with sites implicated in providing guidance information for retinal axon growth in the developing optic chiasm. Together, these data support the hypothesis that molecularly distinct, longitudinally aligned domains in the forebrain regulate the pattern of retinal axon projections in the developing hypothalamus.


Assuntos
Axônios/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Genes Reguladores , Genes Reporter , Neurônios/fisiologia , Quiasma Óptico/embriologia , Retina/embriologia , Vias Visuais/embriologia , Animais , Desenvolvimento Embrionário e Fetal , Feminino , Idade Gestacional , Hipotálamo/embriologia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Transcrição Gênica , beta-Galactosidase/genética
9.
J Neurosci ; 18(24): 10502-13, 1998 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-9852588

RESUMO

During mammalian development, retinal ganglion cell (RGC) axons from nasal retina cross the optic chiasm midline, whereas temporal retina axons do not and grow ipsilaterally, resulting in a projection of part of the visual world onto one side of the brain while the remaining part is represented on the opposite side. Previous studies have shown that RGC axons in GAP-43-deficient mice initially fail to grow from the optic chiasm to form optic tracts and are delayed temporarily in the midline region. Here we show that this delayed RGC axon exit from the chiasm is characterized by abnormal randomized axon routing into the ipsilateral and contralateral optic tracts, leading to duplicated representations of the visual world in both sides of the brain. Within the chiasm, individual contralaterally projecting axons grow in unusual semicircular trajectories, and the normal ipsilateral turning of ventral temporal axons is absent. These effects on both axon populations suggest that GAP-43 does not mediate pathfinding specifically for one or the other axon population but is more consistent with a model in which the initial pathfinding defect at the chiasm/tract transition zone leads to axons backing up into the chiasm, resulting in circular trajectories and eventual random axon exit into one or the other optic tract. Unusual RGC axon trajectories include chiasm midline recrossing similar to abnormal CNS midline recrossing in invertebrate "roundabout" mutants and Drosophila with altered calmodulin function. This resemblance and the fact that GAP-43 also has been proposed to regulate calmodulin availability raise the possibility that calmodulin function is involved in CNS midline axon guidance in both vertebrates and invertebrates.


Assuntos
Axônios/fisiologia , Lateralidade Funcional/fisiologia , Proteína GAP-43/fisiologia , Quiasma Óptico/embriologia , Células Ganglionares da Retina/citologia , Animais , Axônios/metabolismo , Diferenciação Celular/fisiologia , Embrião de Mamíferos , Proteína GAP-43/genética , Proteína GAP-43/metabolismo , Camundongos , Camundongos Knockout , Retina/citologia , Retina/embriologia , Retina/metabolismo , Células Ganglionares da Retina/metabolismo
10.
J Neurosci ; 18(15): 5692-705, 1998 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-9671660

RESUMO

Pathfinding mechanisms underlying retinal ganglion cell (RGC) axon growth from the optic chiasm into the optic tract are unknown. Previous work has shown that mouse embryos deficient in GAP-43 have an enlarged optic chiasm within which RGC axons were reportedly stalled. Here we have found that the enlarged chiasm of GAP-43 null mouse embryos appears subsequent to a failure of the earliest RGC axons to progress laterally through the chiasm-tract transition zone to form the optic tract. Previous work has shown that ventral diencephalon CD44/stage-specific embryonic antigen (SSEA) neurons provide guidance information for RGC axons during chiasm formation. Here we found that in the chiasm-tract transition zone, axons of CD44/SSEA neurons precede RGC axons into the lateral diencephalic wall and like RGC axons also express GAP-43. However unlike RGC axons, CD44/SSEA axon trajectories are unaffected in GAP-43 null embryos, indicating that GAP-43-dependent guidance at this site is RGC axon specific or occurs only at specific developmental times. To determine whether the phenotype results from loss of GAP-43 in RGCs or in diencephalon components such as CD44/SSEA axons, wild-type, heterozygous, or homozygous GAP-43 null donor retinal tissues were grafted onto host diencephalons of all three genotypes, and graft axon growth into the optic tract region was assessed. Results show that optic tract development requires cell autonomous GAP-43 function in RGC axons and not in cellular elements of the ventral diencephalon or transition zone.


Assuntos
Sistema Nervoso Autônomo/fisiologia , Axônios/fisiologia , Proteína GAP-43/fisiologia , Quiasma Óptico/fisiologia , Disco Óptico/fisiologia , Células Ganglionares da Retina/ultraestrutura , Animais , Sistema Nervoso Autônomo/embriologia , Axônios/imunologia , Mapeamento Encefálico , Diencéfalo/embriologia , Diencéfalo/fisiologia , Desenvolvimento Embrionário e Fetal/fisiologia , Receptores de Hialuronatos/análise , Camundongos , Camundongos Endogâmicos C57BL , Quiasma Óptico/embriologia , Disco Óptico/embriologia , Nervo Óptico/embriologia , Nervo Óptico/fisiologia , Vias Visuais/embriologia , Vias Visuais/fisiologia
11.
Neuron ; 19(3): 575-89, 1997 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9331350

RESUMO

Embryonic retinal ganglion cell (RGC) axons must extend toward and grow through the optic disc to exit the eye into the optic nerve. In the embryonic mouse eye, we found that immunoreactivity for the axon guidance molecule netrin-1 was specifically on neuroepithelial cells at the disk surrounding exiting RGC axons, and RGC axons express the netrin receptor, DCC (deleted in colorectal cancer). In vitro, anti-DCC antibodies reduced RGC neurite outgrowth responses to netrin-1. In netrin-1- and DCC-deficient embryos, RGC axon pathfinding to the disc was unaffected; however, axons failed to exit into the optic nerve, resulting in optic nerve hypoplasia. Thus, netrin-1 through DCC appears to guide RGC axons locally at the optic disc rather than at long range, apparently reflecting the localization of netrin-1 protein to the vicinity of netrin-1-producing cells at the optic disc.


Assuntos
Axônios/fisiologia , Moléculas de Adesão Celular/imunologia , Fatores de Crescimento Neural/farmacologia , Nervo Óptico/anormalidades , Nervo Óptico/embriologia , Proteínas Supressoras de Tumor , Animais , Anticorpos Monoclonais , Axônios/química , Axônios/patologia , Ligação Competitiva/imunologia , Moléculas de Adesão Celular/análise , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular Neuronais/genética , Receptor DCC , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação/fisiologia , Fatores de Crescimento Neural/análise , Fatores de Crescimento Neural/genética , Netrina-1 , Neuritos/efeitos dos fármacos , Neuritos/fisiologia , Nervo Óptico/patologia , Epitélio Pigmentado Ocular/embriologia , Epitélio Pigmentado Ocular/patologia , Gravidez , Receptores de Superfície Celular/análise , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/fisiologia , Células Ganglionares da Retina/química , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/ultraestrutura
12.
Curr Opin Neurobiol ; 7(5): 647-53, 1997 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9384544

RESUMO

The importance of vision in the behavior of animals, from invertebrates to primates, has led to a good deal of interest in how projection neurons in the retina make specific connections with targets in the brain. Recent research has focused on the cellular interactions occurring between retinal ganglion cell (RGC) axons and specific glial and neuronal populations in the embryonic brain during formation of the mouse optic chiasm. These interactions appear to be involved both in determining the position of the optic chiasm on the ventral diencephalon (presumptive hypothalamus) and in ipsilateral and contralateral RGC axon pathfinding, development events fundamental to binocular vision in the adult animal.


Assuntos
Axônios/fisiologia , Neuroglia/fisiologia , Neurônios/fisiologia , Quiasma Óptico/embriologia , Animais , Humanos , Quiasma Óptico/citologia
13.
Science ; 269(5220): 98-101, 1995 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-7541558

RESUMO

Mouse retinal ganglion cell axons growing from the eye encounter embryonic neurons at the future site of the optic chiasm. After in vivo ablation of these chiasm neurons with a monoclonal antibody and complement, retinal axons did not cross the midline and stalled at approximately the entry site into the chiasm region. Thus, in the mouse, the presence of early-generated neurons that reside at the site of the future chiasm is required for formation of the optic chiasm by retinal ganglion cell axons.


Assuntos
Axônios/fisiologia , Neurônios/fisiologia , Quiasma Óptico/embriologia , Células Ganglionares da Retina/fisiologia , Vias Visuais/embriologia , Animais , Anticorpos Monoclonais , Axônios/ultraestrutura , Proteínas de Transporte/imunologia , Receptores de Hialuronatos , Hipotálamo/citologia , Hipotálamo/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/ultraestrutura , Quiasma Óptico/citologia , Nervo Óptico/embriologia , Receptores de Superfície Celular/imunologia , Receptores de Retorno de Linfócitos/imunologia , Retina/embriologia
14.
Neuron ; 12(5): 957-75, 1994 May.
Artigo em Inglês | MEDLINE | ID: mdl-7514428

RESUMO

The first retinal ganglion cell axons arriving at the embryonic mouse ventral diencephalon encounter an inverted V-shaped neuronal array defining the midline and posterior boundaries of the future optic chiasm. These neurons express L1, an immunoglobulin superfamily molecule known to promote retinal axon outgrowth, and CD44, a cell surface molecule that we find inhibits embryonic retinal axon growth in vitro. Incoming retinal axons do not penetrate this L1/CD44 neuron array, but turn to establish the characteristic X-shaped optic chiasm along the anterior border of this array. These results suggest that L1/CD44 neurons may serve as an anatomical template for retinal axon pathways at the embryonic mouse ventral diencephalon.


Assuntos
Axônios/fisiologia , Proteínas de Transporte/fisiologia , Moléculas de Adesão Celular Neuronais/fisiologia , Diencéfalo/fisiologia , Neurônios/fisiologia , Quiasma Óptico/fisiologia , Receptores de Superfície Celular/fisiologia , Receptores de Retorno de Linfócitos/fisiologia , Retina/embriologia , Células Ganglionares da Retina/fisiologia , Animais , Sequência de Bases , Proteínas de Ligação ao Cálcio/fisiologia , Proteínas de Transporte/biossíntese , Moléculas de Adesão Celular Neuronais/biossíntese , Divisão Celular , Primers do DNA , Diencéfalo/embriologia , Embrião de Mamíferos , Desenvolvimento Embrionário e Fetal , Feminino , Expressão Gênica , Idade Gestacional , Receptores de Hialuronatos , Imuno-Histoquímica , Complexo Antígeno L1 Leucocitário , Linfócitos/imunologia , Linfócitos/fisiologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/análise , Proteínas Associadas aos Microtúbulos/biossíntese , Dados de Sequência Molecular , Neurônios/metabolismo , Quiasma Óptico/embriologia , Técnicas de Cultura de Órgãos , Reação em Cadeia da Polimerase , Gravidez , Receptores de Superfície Celular/biossíntese , Receptores de Retorno de Linfócitos/biossíntese , Células Ganglionares da Retina/citologia
15.
Neuron ; 10(4): 761-77, 1993 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-8386532

RESUMO

The specific routing of retinal ganglion cell axons at the mammalian optic chiasm into the ipsilateral or contralateral optic tracts results from axon pathfinding. Using time-lapse microscopy, we show that encounters between axons from opposite eyes at the chiasm induce axon turning, but do not always aim retinal axons into the optic tracts. Following removal of one eye before retinal axons have invaded the chiasm, axons from the remaining eye are still routed into the correct optic tracts. Ipsilaterally projecting axons make turning decisions without pausing over 10-20 min, whereas contralaterally projecting axons occasionally pause before crossing the midline. Thus, initial pathfinding at the chiasm does not depend on binocular axon interactions, but on local cues that trigger differential growth cone responses.


Assuntos
Axônios/fisiologia , Quiasma Óptico/embriologia , Células Ganglionares da Retina/fisiologia , Animais , Enucleação Ocular , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Vias Neurais/embriologia , Células Ganglionares da Retina/ultraestrutura , Transmissão Sináptica/fisiologia , Televisão , Fatores de Tempo
16.
Curr Opin Neurobiol ; 3(1): 45-52, 1993 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-8453289

RESUMO

Axons of retinal ganglion cells in the eye form a system of retinal projections, which carry information about the world around us to targets in the brain for processing. Recent work combining video imaging technology, manipulations of mouse embryos in vivo, and molecular approaches have begun to shed light on how this major sensory pathway in the mammalian brain comes about during embryonic development.


Assuntos
Quiasma Óptico/crescimento & desenvolvimento , Vias Visuais/crescimento & desenvolvimento , Animais , Humanos , Quiasma Óptico/fisiologia , Células Ganglionares da Retina/fisiologia , Vias Visuais/fisiologia
18.
J Neurosci ; 10(6): 1995-2007, 1990 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-2162389

RESUMO

During development of the mammalian CNS, axons encounter multiple pathway choices on their way to central target structures. A major pathway branch point in the visual system occurs at the optic chiasm, where retinal ganglion cell axons may either enter the ipsilateral or the contralateral optic tract. To investigate whether embryonic mouse retinal ganglion cell axons, upon reaching the optic chiasm, selectively grow into the correct pathway, developing retinal ganglion cells were retrogradely labeled using either 1,1'-dioctadecyl- 3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil) or fluorescent microspheres placed into the optic tract on one side. The distribution of ipsilaterally and contralaterally projecting ganglion cells in the embryo was then examined and compared to that of the adult animal. Results show that axon routing at the chiasm is already extremely adult-like as early as embryonic day 15 (E15), shortly after retinal axons arrive at the chiasm. [Retinal ganglion cell neurogenesis = E11-E18 (Drager, 1985); birth = E21.] Throughout the development of this pathway, routing errors are infrequent and are on the order of only about 3-8/1000 retinal ganglion cells. Thus, embryonic retinal ganglion cell axons do not project randomly at the optic chiasm but instead appear to be highly specific in their choice of pathway. To learn how correct pathway choices are made, retinal axons were retrogradely labeled with Dil and their trajectories at the optic chiasm were reconstructed. Results show that ipsilaterally and contralaterally projecting axons are highly intermixed as they enter the chiasm region but selectively grow into the correct pathway. For example, a contralaterally projecting axon near the entrance of the ipsilateral optic tract will turn and bypass this pathway and grow towards the midline to head into the contralateral optic tract. Similarly, axons far away from the ipsilateral optic tract frequently turn abruptly at right angles to enter the ipsilateral tract, directly crossing over contralaterally projecting axons heading to the opposite side. The sorting out of intermixed ipsilaterally and contralaterally projecting retinal axons into the appropriate optic tracts strongly suggests the presence of specific guidance cues at the optic chiasm during embryonic development. Together, results from this study demonstrate that the pattern of axon projection at the adult mammalian optic chiasm is gradually built upon a highly specific pattern of axon routing laid down early during development.


Assuntos
Axônios/fisiologia , Desenvolvimento Embrionário e Fetal , Quiasma Óptico/fisiologia , Retina/ultraestrutura , Células Ganglionares da Retina/ultraestrutura , Animais , Carbocianinas , Fluorescência , Corantes Fluorescentes , Camundongos , Camundongos Endogâmicos C3H , Microesferas , Quiasma Óptico/embriologia , Retina/citologia , Transmissão Sináptica
19.
Nature ; 336(6198): 468-71, 1988 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-2461517

RESUMO

The cellular mechanisms by which the axons of individual neurons achieve their precise terminal branching patterns are poorly understood. In the visual system of adult cats, retinal ganglion cell axons from each eye form narrow cylindrical terminal arborizations restricted to alternate non-overlapping layers within the lateral geniculate nucleus (LGN). During prenatal development, axon arborizations from the two eyes are initially simple in shape and are intermixed with each other; they then gradually segregate to form complex adult-like arborizations in separate eye-specific layers by birth. Here we report that ganglion cell axons exposed to tetrodotoxin (TTX) to block neuronal activity during fetal life fail to form the normal pattern of terminal arborization. Individual TTX-treated axon arborizations are not stunted in their growth, but instead produce abnormally widespread terminal arborizations which extend across the equivalent of approximately two eye-specific layers. These observations suggest that during fetal development of the central nervous system, the formation of morphologically appropriate and correctly located axon terminal arborizations within targets is brought about by an activity-dependent process.


Assuntos
Axônios/ultraestrutura , Corpos Geniculados/embriologia , Troca Materno-Fetal , Retina/ultraestrutura , Células Ganglionares da Retina/ultraestrutura , Tetrodotoxina/farmacologia , Animais , Transporte Axonal/efeitos dos fármacos , Axônios/efeitos dos fármacos , Gatos , Feminino , Corpos Geniculados/efeitos dos fármacos , Corpos Geniculados/ultraestrutura , Idade Gestacional , Gravidez , Células Ganglionares da Retina/efeitos dos fármacos
20.
Proc Natl Acad Sci U S A ; 85(19): 7361-5, 1988 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-3174640

RESUMO

In the mammalian visual system, the terminal arbors of retinal ganglion cell axons from the two eyes are restricted to mutually exclusive territories within their thalamic target, the lateral geniculate nucleus (LGN). Here we have investigated some of the factors that determine the adult morphology of terminal arbors in the cat's retinogeniculate system. Removal of one eye during prenatal life at a time when retinogeniculate axons from the two eyes are extensively intermixed within the LGN perturbs the subsequent morphological development of some but not all axons from the remaining eye. The presence of terminal arbors qualitatively normal in size, shape, and location within the LGN suggests that for some retinal axons, ongoing binocular interactions throughout prenatal life are not needed for the development of normal arbor morphology. However, many of the axons form arbors of abnormal size or location, suggesting that such features of axon morphology are not intrinsically determined for these axons but may be susceptible to external influences. Electrophysiological studies reveal that the abnormal arbors all belong to the functionally distinct Y class of retinal ganglion cells, whereas the normal arbors all belong to X cells. The different responses of X and Y axons to prenatal enucleation demonstrate that during development subsets of a single neuronal population projecting to the same target in the central nervous system can be under different developmental controls for axon arbor differentiation.


Assuntos
Axônios/ultraestrutura , Olho/embriologia , Retina/citologia , Células Ganglionares da Retina/citologia , Animais , Gatos , Eletrofisiologia , Desenvolvimento Embrionário e Fetal , Feminino , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA