Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann N Y Acad Sci ; 1480(1): 116-135, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32671850

RESUMO

Nerve agents (NAs) produce acute and long-term brain injury and dysfunction, as evident from the Japan and Syria incidents. Magnetic resonance imaging (MRI) is a versatile technique to examine such chronic anatomical, functional, and neuronal damage in the brain. The objective of this study was to investigate long-term structural and neuronal lesion abnormalities in rats exposed to acute soman intoxication. T2-weighted MRI images of 10 control and 17 soman-exposed rats were acquired using a Siemens MRI system at 90 days after soman exposure. Quantification of brain tissue volumes and T2 signal intensity was conducted using the Inveon Research Workplace software and the extent of damage was correlated with histopathology and cognitive function. Soman-exposed rats showed drastic hippocampal atrophy with neuronal loss and reduced hippocampal volume (HV), indicating severe damage, but had similar T2 relaxation times to the control group, suggesting limited scarring and fluid density changes despite the volume decrease. Conversely, soman-exposed rats displayed significant increases in lateral ventricle volumes and T2 times, signifying strong cerebrospinal fluid expansion in compensation for tissue atrophy. The total brain volume, thalamic volume, and thalamic T2 time were similar in both groups, however, suggesting that some brain regions remained more intact long-term after soman intoxication. The MRI neuronal lesions were positively correlated with the histological markers of neurodegeneration and neuroinflammation 90 days after soman exposure. The predominant MRI hippocampal atrophy (25%) was highly consistent with massive reduction (35%) of neuronal nuclear antigen-positive (NeuN+ ) principal neurons and parvalbumin-positive (PV+ ) inhibitory interneurons within this brain region. The HV was significantly correlated with both inflammatory markers of GFAP+ astrogliosis and IBA1+ microgliosis. The reduced HV was also directly correlated with significant memory deficits in the soman-exposed cohort, confirming a possible neurobiological basis for neurological dysfunction. Together, these findings provide powerful insight on long-term region-specific neurodegenerative patterns after soman exposure and demonstrate the feasibility of in vivo neuroimaging to monitor neuropathology, predict the risk of neurological deficits, and evaluate response to medical countermeasures for NAs.


Assuntos
Hipocampo , Interneurônios , Imageamento por Ressonância Magnética , Transtornos da Memória , Agentes Neurotóxicos/intoxicação , Doenças Neurodegenerativas , Neuroimagem , Soman/intoxicação , Animais , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Hipocampo/patologia , Interneurônios/metabolismo , Interneurônios/patologia , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/diagnóstico por imagem , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
2.
Int J Mol Sci ; 20(1)2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30626103

RESUMO

This article provides an overview of neuroimaging biomarkers in experimental epileptogenesis and refractory epilepsy. Neuroimaging represents a gold standard and clinically translatable technique to identify neuropathological changes in epileptogenesis and longitudinally monitor its progression after a precipitating injury. Neuroimaging studies, along with molecular studies from animal models, have greatly improved our understanding of the neuropathology of epilepsy, such as the hallmark hippocampus sclerosis. Animal models are effective for differentiating the different stages of epileptogenesis. Neuroimaging in experimental epilepsy provides unique information about anatomic, functional, and metabolic alterations linked to epileptogenesis. Recently, several in vivo biomarkers for epileptogenesis have been investigated for characterizing neuronal loss, inflammation, blood-brain barrier alterations, changes in neurotransmitter density, neurovascular coupling, cerebral blood flow and volume, network connectivity, and metabolic activity in the brain. Magnetic resonance imaging (MRI) is a sensitive method for detecting structural and functional changes in the brain, especially to identify region-specific neuronal damage patterns in epilepsy. Positron emission tomography (PET) and single-photon emission computerized tomography are helpful to elucidate key functional alterations, especially in areas of brain metabolism and molecular patterns, and can help monitor pathology of epileptic disorders. Multimodal procedures such as PET-MRI integrated systems are desired for refractory epilepsy. Validated biomarkers are warranted for early identification of people at risk for epilepsy and monitoring of the progression of medical interventions.


Assuntos
Biomarcadores/metabolismo , Epilepsia/diagnóstico por imagem , Neuroimagem , Animais , Modelos Animais de Doenças , Epilepsia/fisiopatologia , Glucose/metabolismo , Hemodinâmica , Humanos
3.
Mol Imaging Biol ; 20(5): 780-788, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29508262

RESUMO

PURPOSE: Metabolic dysfunction in Duchenne muscular dystrophy (DMD) is characterized by reduced glycolytic and oxidative enzymes, decreased and abnormal mitochondria, decreased ATP, and increased oxidative stress. We analyzed glucose metabolism as a potential disease biomarker in the genetically homologous golden retriever muscular dystrophy (GRMD) dog with molecular, biochemical, and in vivo imaging. PROCEDURES: Pelvic limb skeletal muscle and left ventricle tissue from the heart were analyzed by mRNA profiling, qPCR, western blotting, and immunofluorescence microscopy for the primary glucose transporter (GLUT4). Physiologic glucose handling was measured by fasting glucose tolerance test (GTT), insulin levels, and skeletal and cardiac positron emission tomography/X-ray computed tomography (PET/CT) using the glucose analog 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG). RESULTS: MRNA profiles showed decreased GLUT4 in the cranial sartorius (CS), vastus lateralis (VL), and long digital extensor (LDE) of GRMD vs. normal dogs. QPCR confirmed GLUT4 downregulation but increased hexokinase-1. GLUT4 protein levels were not different in the CS, VL, or left ventricle but increased in the LDE of GRMD vs. normal. Microscopy revealed diffuse membrane expression of GLUT4 in GRMD skeletal but not cardiac muscle. GTT showed higher basal glucose and insulin in GRMD but rapid tissue glucose uptake at 5 min post-dextrose injection in GRMD vs. normal/carrier dogs. PET/ CT with [18F]FDG and simultaneous insulin stimulation showed a significant increase (p = 0.03) in mean standard uptake values (SUV) in GRMD skeletal muscle but not pelvic fat at 5 min post-[18F]FDG /insulin injection. Conversely, mean cardiac SUV was lower in GRMD than carrier/normal (p < 0.01). CONCLUSIONS: Altered glucose metabolism in skeletal and cardiac muscle of GRMD dogs can be monitored with molecular, biochemical, and in vivo imaging studies and potentially utilized as a biomarker for disease progression and therapeutic response.


Assuntos
Doenças do Cão/metabolismo , Glucose/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Cães , Fluordesoxiglucose F18/química , Perfilação da Expressão Gênica , Teste de Tolerância a Glucose , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/diagnóstico por imagem , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Miocárdio/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Appl Environ Microbiol ; 71(6): 3025-32, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15932998

RESUMO

Genes encoding three putative endopeptidases were identified from a draft-quality genome sequence of Lactobacillus helveticus CNRZ32 and designated pepO3, pepF, and pepE2. The ability of cell extracts from Escherichia coli DH5alpha derivatives expressing CNRZ32 endopeptidases PepE, PepE2, PepF, PepO, PepO2, and PepO3 to hydrolyze the model bitter peptides, beta-casein (beta-CN) (f193-209) and alpha(S1)-casein (alpha(S1)-CN) (f1-9), under cheese-ripening conditions (pH 5.1, 4% NaCl, and 10 degrees C) was examined. CNRZ32 PepO3 was determined to be a functional paralog of PepO2 and hydrolyzed both peptides, while PepE and PepF had unique specificities towards alpha(S1)-CN (f1-9) and beta-CN (f193-209), respectively. CNRZ32 PepE2 and PepO did not hydrolyze either peptide under these conditions. To demonstrate the utility of these peptidases in cheese, PepE, PepO2, and PepO3 were expressed in Lactococcus lactis, a common cheese starter, using a high-copy vector pTRKH2 and under the control of the pepO3 promoter. Cell extracts of L. lactis derivatives expressing these peptidases were used to hydrolyze beta-CN (f193-209) and alpha(S1)-CN (f1-9) under cheese-ripening conditions in single-peptide reactions, in a defined peptide mix, and in Cheddar cheese serum. Peptides alpha(S1)-CN (f1-9), alpha(S1)-CN (f1-13), and alpha(S1)-CN (f1-16) were identified from Cheddar cheese serum and included in the defined peptide mix. Our results demonstrate that in all systems examined, PepO2 and PepO3 had the highest activity with beta-CN (f193-209) and alpha(S1)-CN (f1-9). Cheese-derived peptides were observed to affect the activity of some of the enzymes examined, underscoring the importance of incorporating such peptides in model systems. These data indicate that L. helveticus CNRZ32 endopeptidases PepO2 and PepO3 are likely to play a key role in this strain's ability to reduce bitterness in cheese.


Assuntos
Caseínas/metabolismo , Queijo/microbiologia , Endopeptidases/genética , Lactobacillus/enzimologia , Fragmentos de Peptídeos/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Endopeptidases/química , Endopeptidases/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Genoma Bacteriano , Hidrólise , Lactobacillus/genética , Lactococcus lactis/enzimologia , Lactococcus lactis/genética , Dados de Sequência Molecular , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...