Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 220(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37382893

RESUMO

Mucosal-associated invariant T (MAIT) cells use canonical semi-invariant T cell receptors (TCR) to recognize microbial riboflavin precursors displayed by the antigen-presenting molecule MR1. The extent of MAIT TCR crossreactivity toward physiological, microbially unrelated antigens remains underexplored. We describe MAIT TCRs endowed with MR1-dependent reactivity to tumor and healthy cells in the absence of microbial metabolites. MAIT cells bearing TCRs crossreactive toward self are rare but commonly found within healthy donors and display T-helper-like functions in vitro. Experiments with MR1-tetramers loaded with distinct ligands revealed significant crossreactivity among MAIT TCRs both ex vivo and upon in vitro expansion. A canonical MAIT TCR was selected on the basis of extremely promiscuous MR1 recognition. Structural and molecular dynamic analyses associated promiscuity to unique TCRß-chain features that were enriched within self-reactive MAIT cells of healthy individuals. Thus, self-reactive recognition of MR1 represents a functionally relevant indication of MAIT TCR crossreactivity, suggesting a potentially broader role of MAIT cells in immune homeostasis and diseases, beyond microbial immunosurveillance.


Assuntos
Células T Invariantes Associadas à Mucosa , Humanos , Membrana Celular , Comunicação Celular , Reações Cruzadas , Reparo do DNA , Antígenos de Histocompatibilidade Classe I , Antígenos de Histocompatibilidade Menor
2.
Eur J Immunol ; 52(4): 618-632, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35108401

RESUMO

The nonpolymorphic class Ib molecule, HLA-E, primarily presents peptides from HLA class Ia leader peptides, providing an inhibitory signal to NK cells via CD94/NKG2 interactions. Although peptides of pathogenic origin can also be presented by HLA-E to T cells, the molecular basis underpinning their role in antigen surveillance is largely unknown. Here, we solved a co-complex crystal structure of a TCR with an HLA-E presented peptide (pHLA-E) from bacterial (Mycobacterium tuberculosis) origin, and the first TCR-pHLA-E complex with a noncanonically presented peptide from viral (HIV) origin. The structures provided a molecular foundation to develop a novel method to introduce cysteine traps using non-natural amino acid chemistry that stabilized pHLA-E complexes while maintaining native interface contacts between the TCRs and different pHLA-E complexes. These pHLA-E monomers could be used to isolate pHLA-E-specific T cells, with obvious utility for studying pHLA-E restricted T cells, and for the identification of putative therapeutic TCRs.


Assuntos
Aminoácidos , Antígenos HLA , Antígenos de Histocompatibilidade Classe I , Peptídeos , Receptores de Antígenos de Linfócitos T , Antígenos HLA-E
3.
J Clin Invest ; 130(5): 2673-2688, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32310221

RESUMO

Tumor-associated peptide-human leukocyte antigen complexes (pHLAs) represent the largest pool of cell surface-expressed cancer-specific epitopes, making them attractive targets for cancer therapies. Soluble bispecific molecules that incorporate an anti-CD3 effector function are being developed to redirect T cells against these targets using 2 different approaches. The first achieves pHLA recognition via affinity-enhanced versions of natural TCRs (e.g., immune-mobilizing monoclonal T cell receptors against cancer [ImmTAC] molecules), whereas the second harnesses an antibody-based format (TCR-mimic antibodies). For both classes of reagent, target specificity is vital, considering the vast universe of potential pHLA molecules that can be presented on healthy cells. Here, we made use of structural, biochemical, and computational approaches to investigate the molecular rules underpinning the reactivity patterns of pHLA-targeting bispecifics. We demonstrate that affinity-enhanced TCRs engage pHLA using a comparatively broad and balanced energetic footprint, with interactions distributed over several HLA and peptide side chains. As ImmTAC molecules, these TCRs also retained a greater degree of pHLA selectivity, with less off-target activity in cellular assays. Conversely, TCR-mimic antibodies tended to exhibit binding modes focused more toward hot spots on the HLA surface and exhibited a greater degree of crossreactivity. Our findings extend our understanding of the basic principles that underpin pHLA selectivity and exemplify a number of molecular approaches that can be used to probe the specificity of pHLA-targeting molecules, aiding the development of future reagents.


Assuntos
Antígenos HLA/imunologia , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Sequência de Aminoácidos , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/imunologia , Anticorpos Antineoplásicos/química , Anticorpos Antineoplásicos/genética , Anticorpos Antineoplásicos/imunologia , Especificidade de Anticorpos , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Cristalografia por Raios X , Antígenos HLA/química , Antígenos HLA/genética , Humanos , Indicadores e Reagentes , Modelos Moleculares , Simulação de Dinâmica Molecular , Mimetismo Molecular/genética , Mimetismo Molecular/imunologia , Peptídeos/química , Peptídeos/genética , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/imunologia
4.
Proc Natl Acad Sci U S A ; 114(22): E4492-E4500, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28507124

RESUMO

A paucity of novel acting antibacterials is in development to treat the rising threat of antimicrobial resistance, particularly in Gram-negative hospital pathogens, which has led to renewed efforts in antibiotic drug discovery. Fluoroquinolones are broad-spectrum antibacterials that target DNA gyrase by stabilizing DNA-cleavage complexes, but their clinical utility has been compromised by resistance. We have identified a class of antibacterial thiophenes that target DNA gyrase with a unique mechanism of action and have activity against a range of bacterial pathogens, including strains resistant to fluoroquinolones. Although fluoroquinolones stabilize double-stranded DNA breaks, the antibacterial thiophenes stabilize gyrase-mediated DNA-cleavage complexes in either one DNA strand or both DNA strands. X-ray crystallography of DNA gyrase-DNA complexes shows the compounds binding to a protein pocket between the winged helix domain and topoisomerase-primase domain, remote from the DNA. Mutations of conserved residues around this pocket affect activity of the thiophene inhibitors, consistent with allosteric inhibition of DNA gyrase. This druggable pocket provides potentially complementary opportunities for targeting bacterial topoisomerases for antibiotic development.


Assuntos
Antibacterianos , Clivagem do DNA , DNA Girase , Tiofenos , Antibacterianos/química , Antibacterianos/metabolismo , Cristalografia por Raios X , DNA Girase/química , DNA Girase/metabolismo , Descoberta de Drogas , Modelos Moleculares , Tiofenos/química , Tiofenos/metabolismo
5.
Nat Commun ; 6: 10048, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26640131

RESUMO

New antibacterials are needed to tackle antibiotic-resistant bacteria. Type IIA topoisomerases (topo2As), the targets of fluoroquinolones, regulate DNA topology by creating transient double-strand DNA breaks. Here we report the first co-crystal structures of the antibacterial QPT-1 and the anticancer drug etoposide with Staphylococcus aureus DNA gyrase, showing binding at the same sites in the cleaved DNA as the fluoroquinolone moxifloxacin. Unlike moxifloxacin, QPT-1 and etoposide interact with conserved GyrB TOPRIM residues rationalizing why QPT-1 can overcome fluoroquinolone resistance. Our data show etoposide's antibacterial activity is due to DNA gyrase inhibition and suggests other anticancer agents act similarly. Analysis of multiple DNA gyrase co-crystal structures, including asymmetric cleavage complexes, led to a 'pair of swing-doors' hypothesis in which the movement of one DNA segment regulates cleavage and religation of the second DNA duplex. This mechanism can explain QPT-1's bacterial specificity. Structure-based strategies for developing topo2A antibacterials are suggested.


Assuntos
Antibacterianos/química , Antineoplásicos/química , DNA Girase/química , Etoposídeo/química , Fluoroquinolonas/química , Staphylococcus aureus/enzimologia , Inibidores da Topoisomerase II/química , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , DNA Girase/genética , DNA Girase/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Farmacorresistência Bacteriana , Etoposídeo/farmacologia , Fluoroquinolonas/farmacologia , Modelos Moleculares , Estrutura Molecular , Moxifloxacina , Staphylococcus aureus/química , Staphylococcus aureus/efeitos dos fármacos , Inibidores da Topoisomerase II/farmacologia
6.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 10): 1242-6, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26457513

RESUMO

Fluoroquinolone drugs such as moxifloxacin kill bacteria by stabilizing the normally transient double-stranded DNA breaks created by bacterial type IIA topoisomerases. Previous crystal structures of Staphylococcus aureus DNA gyrase with asymmetric DNAs have had static disorder (with the DNA duplex observed in two orientations related by the pseudo-twofold axis of the complex). Here, 20-base-pair DNA homoduplexes were used to obtain crystals of covalent DNA-cleavage complexes of S. aureus DNA gyrase. Crystals with QPT-1, moxifloxacin or etoposide diffracted to between 2.45 and 3.15 Šresolution. A G/T mismatch introduced at the ends of the DNA duplexes facilitated the crystallization of slightly asymmetric complexes of the inherently flexible DNA-cleavage complexes.


Assuntos
Clivagem do DNA , DNA Girase/química , Etoposídeo/química , Fluoroquinolonas/química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos de Espiro/química , Staphylococcus aureus/enzimologia , Sequência de Bases , Cristalização , Cristalografia por Raios X , Dados de Sequência Molecular , Moxifloxacina
7.
Biochem J ; 462(3): 581-9, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24942958

RESUMO

Tryptophan is an important precursor for chemical entities that ultimately support the biosynthesis of key metabolites. The second stage of tryptophan catabolism is catalysed by kynurenine formamidase, an enzyme that is different between eukaryotes and prokaryotes. In the present study, we characterize the catalytic properties and present the crystal structures of three bacterial kynurenine formamidases. The structures reveal a new amidase protein fold, a highly organized and distinctive binuclear Zn2+ catalytic centre in a confined, hydrophobic and relatively rigid active site. The structure of a complex with 2-aminoacetophenone delineates aspects of molecular recognition extending to the observation that the substrate itself may be conformationally restricted to assist binding in the confined space of the active site and for subsequent processing. The cations occupy a crowded environment, and, unlike most Zn2+-dependent enzymes, there is little scope to increase co-ordination number during catalysis. We propose that the presence of a bridging water/hydroxide ligand in conjunction with the placement of an active site histidine supports a distinctive amidation mechanism.


Assuntos
Arilformamidase/química , Zinco/metabolismo , Arilformamidase/metabolismo , Bacillus anthracis/enzimologia , Biocatálise , Burkholderia cenocepacia/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Cinética , Conformação Proteica , Pseudomonas aeruginosa/enzimologia
8.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 12): 2468-82, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24311588

RESUMO

Some Gram-negative bacteria target their competitors by exploiting the type VI secretion system to extrude toxic effector proteins. To prevent self-harm, these bacteria also produce highly specific immunity proteins that neutralize these antagonistic effectors. Here, the peptidoglycan endopeptidase specificity of two type VI secretion-system-associated effectors from Serratia marcescens is characterized. These small secreted proteins, Ssp1 and Ssp2, cleave between γ-D-glutamic acid and L-meso-diaminopimelic acid with different specificities. Ssp2 degrades the acceptor part of cross-linked tetratetrapeptides. Ssp1 displays greater promiscuity and cleaves monomeric tripeptides, tetrapeptides and pentapeptides and dimeric tetratetra and tetrapenta muropeptides on both the acceptor and donor strands. Functional assays confirm the identity of a catalytic cysteine in these endopeptidases and crystal structures provide information on the structure-activity relationships of Ssp1 and, by comparison, of related effectors. Functional assays also reveal that neutralization of these effectors by their cognate immunity proteins, which are called resistance-associated proteins (Raps), contributes an essential role to cell fitness. The structures of two immunity proteins, Rap1a and Rap2a, responsible for the neutralization of Ssp1 and Ssp2-like endopeptidases, respectively, revealed two distinct folds, with that of Rap1a not having previously been observed. The structure of the Ssp1-Rap1a complex revealed a tightly bound heteromeric assembly with two effector molecules flanking a Rap1a dimer. A highly effective steric block of the Ssp1 active site forms the basis of effector neutralization. Comparisons with Ssp2-Rap2a orthologues suggest that the specificity of these immunity proteins for neutralizing effectors is fold-dependent and that in cases where the fold is conserved sequence differences contribute to the specificity of effector-immunity protein interactions.


Assuntos
Sistemas de Secreção Bacterianos , Endopeptidases/química , Endopeptidases/metabolismo , Peptidoglicano/metabolismo , Serratia marcescens/enzimologia , Serratia marcescens/fisiologia , Sequência de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Serratia marcescens/química , Especificidade por Substrato
9.
Mol Microbiol ; 86(4): 921-36, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22957938

RESUMO

Protein secretion systems are critical to bacterial virulence and interactions with other organisms. The Type VI secretion system (T6SS) is found in many bacterial species and is used to target either eukaryotic cells or competitor bacteria. However, T6SS-secreted proteins have proven surprisingly elusive. Here, we identified two secreted substrates of the antibacterial T6SS from the opportunistic human pathogen, Serratia marcescens. Ssp1 and Ssp2, both encoded within the T6SS gene cluster, were confirmed as antibacterial toxins delivered by the T6SS. Four related proteins encoded around the Ssp proteins ('Rap' proteins) included two specifically conferring self-resistance ('immunity') against T6SS-dependent Ssp1 or Ssp2 toxicity. Biochemical characterization revealed specific, tight binding between cognate Ssp-Rap pairs, forming complexes of 2:2 stoichiometry. The atomic structures of two Rap proteins were solved, revealing a novel helical fold, dependent on a structural disulphide bond, a structural feature consistent with their functional localization. Homologues of the Serratia Ssp and Rap proteins are found encoded together within other T6SS gene clusters, thus they represent founder members of new families of T6SS-secreted and cognate immunity proteins. We suggest that Ssp proteins are the original substrates of the S. marcescens T6SS, before horizontal acquisition of other T6SS-secreted toxins. Molecular insight has been provided into how pathogens utilize antibacterial T6SSs to overcome competitors and succeed in polymicrobial niches.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/genética , Toxinas Bacterianas/metabolismo , Família Multigênica , Serratia marcescens/genética , Serratia marcescens/metabolismo , Sequência de Aminoácidos , Antibacterianos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Cristalografia por Raios X , Evolução Molecular , Transferência Genética Horizontal , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência
10.
Bioorg Med Chem ; 16(2): 710-20, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17981470

RESUMO

2-Keto-3-deoxy-6-phosphogluconate (KDPG) and 2-keto-3-deoxy-6-phosphogalactonate (KDPGal) aldolases catalyze an identical reaction differing in substrate specificity in only the configuration of a single stereocenter. However, the proteins show little sequence homology at the amino acid level. Here we investigate the determinants of substrate selectivity of these enzymes. The Escherichia coli KDPGal aldolase gene, cloned into a T7 expression vector and overexpressed in E. coli, catalyzes retro-aldol cleavage of the natural substrate, KDPGal, with values of k(cat)/K(M) and k(cat) of 1.9x10(4)M(-1)s(-1) and 4s(-1), respectively. In the synthetic direction, KDPGal aldolase efficiently catalyzes an aldol addition using a limited number of aldehyde substrates, including d-glyceraldehyde-3-phosphate (natural substrate), d-glyceraldehyde, glycolaldehyde, and 2-pyridinecarboxaldehyde. A preparative scale reaction between 2-pyridinecarboxaldehyde and pyruvate catalyzed by KDPGal aldolase produced the aldol adduct of the R stereochemistry in >99.7% ee, a result complementary to that observed using the related KDPG aldolase. The native crystal structure has been solved to a resolution of 2.4A and displays the same (alpha/beta)(8) topology, as KDPG aldolase. We have also determined a 2.1A structure of a Schiff base complex between the enzyme and its substrate. This model predicts that a single amino acid change, T161 in KDPG aldolase to V154 in KDPGal aldolase, plays an important role in determining the stereochemical course of enzyme catalysis and this prediction was borne out by site-directed mutagenesis studies. However, additional changes in the enzyme sequence are required to prepare an enzyme with both high catalytic efficiency and altered stereochemistry.


Assuntos
Aldeído Liases/química , Escherichia coli/enzimologia , Escherichia coli/genética , Aldeído Liases/genética , Aldeído Liases/metabolismo , Sequência de Bases , Cristalografia por Raios X , Dados de Sequência Molecular , Estrutura Molecular , Conformação Proteica , Estereoisomerismo
11.
J Mol Biol ; 365(1): 146-59, 2007 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-17046787

RESUMO

The striking feature of carbohydrates is their constitutional, conformational and configurational diversity. Biology has harnessed this diversity and manipulates carbohydrate residues in a variety of ways, one of which is epimerization. RmlC catalyzes the epimerization of the C3' and C5' positions of dTDP-6-deoxy-D-xylo-4-hexulose, forming dTDP-6-deoxy-L-lyxo-4-hexulose. RmlC is the third enzyme of the rhamnose pathway, and represents a validated anti-bacterial drug target. Although several structures of the enzyme have been reported, the mechanism and the nature of the intermediates have remained obscure. Despite its relatively small size (22 kDa), RmlC catalyzes four stereospecific proton transfers and the substrate undergoes a major conformational change during the course of the transformation. Here we report the structure of RmlC from several organisms in complex with product and product mimics. We have probed site-directed mutants by assay and by deuterium exchange. The combination of structural and biochemical data has allowed us to assign key residues and identify the conformation of the carbohydrate during turnover. Clear knowledge of the chemical structure of RmlC reaction intermediates may offer new opportunities for rational drug design.


Assuntos
Carboidratos Epimerases/química , Açúcares de Nucleosídeo Difosfato/metabolismo , Nucleotídeos de Timina/metabolismo , Proteínas de Bactérias/química , Configuração de Carboidratos , Carboidratos Epimerases/isolamento & purificação , Carboidratos Epimerases/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Açúcares de Nucleosídeo Difosfato/química , Pseudomonas aeruginosa/enzimologia , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Ramnose/biossíntese , Nucleotídeos de Timina/química
12.
J Mol Biol ; 348(4): 971-82, 2005 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-15843027

RESUMO

Uridine diphosphogalactofuranose (UDP-Galf) is the precursor of the d-galactofuranose sugar found in bacterial and parasitic cell walls, including those of many pathogens. UDP-Galf is made from UDP-galactopyranose by the enzyme UDP-galactopyranose mutase. The enzyme requires the reduced FADH- co-factor for activity. The structure of the Mycobacterium tuberculosis mutase with FAD has been determined to 2.25 A. The structures of Klebsiella pneumoniae mutase with FAD and with FADH- bound have been determined to 2.2 A and 2.35 A resolution, respectively. This is the first report of the FADH(-)-containing structure. Two flavin-dependent mechanisms for the enzyme have been proposed, one, which involves a covalent adduct being formed at the flavin and the other based on electron transfer. Using our structural data, we have examined the two mechanisms. The electron transfer mechanism is consistent with the structural data, not surprisingly, since it makes fewer demands on the precise positioning of atoms. A model based on a covalent adduct FAD requires repositioning of the enzyme active site and would appear to require the isoalloxazine ring of FADH- to buckle in a particular way. However, the FADH- structure reveals that the isoalloxazine ring buckles in the opposite sense, this apparently requires the covalent adduct to trigger profound conformational changes in the protein or to buckle the FADH- opposite to that seen in the apo structure.


Assuntos
Transferases Intramoleculares/química , Transferases Intramoleculares/metabolismo , Klebsiella pneumoniae/enzimologia , Mycobacterium tuberculosis/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Flavinas/farmacologia , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Estrutura Quaternária de Proteína , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...