Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(50): 18410-18423, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38049433

RESUMO

The formation of surfaces decorated with biomacromolecules such as proteins, glycans, or nucleic acids with well-controlled orientations and densities is of critical importance for the design of in vitro models, e.g., synthetic cell membranes and interaction assays. To this effect, ligand molecules are often functionalized with an anchor that specifically binds to a surface with a high density of binding sites, providing control over the presentation of the molecules. Here, we present a method to robustly and quantitatively control the surface density of one or several types of anchor-bearing molecules by tuning the relative concentrations of target molecules and free anchors in the incubation solution. We provide a theoretical background that relates incubation concentrations to the final surface density of the molecules of interest and present effective guidelines toward optimizing incubation conditions for the quantitative control of surface densities. Focusing on the biotin anchor, a commonly used anchor for interaction studies, as a salient example, we experimentally demonstrate surface density control over a wide range of densities and target molecule sizes. Conversely, we show how the method can be adapted to quality control the purity of end-grafted biopolymers such as biotinylated glycosaminoglycans by quantifying the amount of residual free biotin reactant in the sample solution.


Assuntos
Biotina , Biotina/química , Membrana Celular , Biopolímeros
2.
Sci Rep ; 12(1): 10980, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768463

RESUMO

Hyaluronan (HA) is a major component of peri- and extra-cellular matrices and plays important roles in many biological processes such as cell adhesion, proliferation and migration. The abundance, size distribution and presentation of HA dictate its biological effects and are also useful indicators of pathologies and disease progression. Methods to assess the molecular mass of free-floating HA and other glycosaminoglycans (GAGs) are well established. In many biological and technological settings, however, GAGs are displayed on surfaces, and methods to obtain the size of surface-attached GAGs are lacking. Here, we present a method to size HA that is end-attached to surfaces. The method is based on the quartz crystal microbalance with dissipation monitoring (QCM-D) and exploits that the softness and thickness of films of grafted HA increase with HA size. These two quantities are sensitively reflected by the ratio of the dissipation shift (ΔD) and the negative frequency shift (- Δf) measured by QCM-D upon the formation of HA films. Using a series of size-defined HA preparations, ranging in size from ~ 2 kDa tetrasaccharides to ~ 1 MDa polysaccharides, we establish a monotonic yet non-linear standard curve of the ΔD/ - Δf ratio as a function of HA size, which reflects the distinct conformations adopted by grafted HA chains depending on their size and surface coverage. We demonstrate that the standard curve can be used to determine the mean size of HA, as well as other GAGs, such as chondroitin sulfate and heparan sulfate, of preparations of previously unknown size in the range from 1 to 500 kDa, with a resolution of better than 10%. For polydisperse samples, our analysis shows that the process of surface-grafting preferentially selects smaller GAG chains, and thus reduces the average size of GAGs that are immobilised on surfaces comparative to the original solution sample. Our results establish a quantitative method to size HA and other GAGs grafted on surfaces, and also highlight the importance of sizing GAGs directly on surfaces. The method should be useful for the development and quality control of GAG-based surface coatings in a wide range of research areas, from molecular interaction analysis to biomaterials coatings.


Assuntos
Glicosaminoglicanos , Ácido Hialurônico , Adesão Celular , Sulfatos de Condroitina , Glicosaminoglicanos/química , Ácido Hialurônico/química , Técnicas de Microbalança de Cristal de Quartzo
3.
Hum Mol Genet ; 30(1): 5-20, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33395696

RESUMO

FEZ1-mediated axonal transport plays important roles in central nervous system development but its involvement in the peripheral nervous system is not well-characterized. FEZ1 is deleted in Jacobsen syndrome (JS), an 11q terminal deletion developmental disorder. JS patients display impaired psychomotor skills, including gross and fine motor delay, suggesting that FEZ1 deletion may be responsible for these phenotypes, given its association with the development of motor-related circuits. Supporting this hypothesis, our data show that FEZ1 is selectively expressed in the rat brain and spinal cord. Its levels progressively increase over the developmental course of human motor neurons (MN) derived from embryonic stem cells. Deletion of FEZ1 strongly impaired axon and dendrite development, and significantly delayed the transport of synaptic proteins into developing neurites. Concurring with these observations, Drosophila unc-76 mutants showed severe locomotion impairments, accompanied by a strong reduction of synaptic boutons at neuromuscular junctions. These abnormalities were ameliorated by pharmacological activation of UNC-51/ATG1, a FEZ1-activating kinase, with rapamycin and metformin. Collectively, the results highlight a role for FEZ1 in MN development and implicate its deletion as an underlying cause of motor impairments in JS patients.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas do Citoesqueleto/genética , Proteínas de Drosophila/genética , Transtornos Neurológicos da Marcha/genética , Síndrome da Deleção Distal 11q de Jacobsen/genética , Proteínas do Tecido Nervoso/genética , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Transporte Axonal/genética , Encéfalo/metabolismo , Encéfalo/patologia , Transtornos Neurológicos da Marcha/fisiopatologia , Humanos , Síndrome da Deleção Distal 11q de Jacobsen/fisiopatologia , Locomoção/genética , Locomoção/fisiologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Neurogênese/genética , Ratos
4.
Stem Cells Int ; 2019: 2018784, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31871463

RESUMO

Human pluripotent stem cells (hPSCs), including induced pluripotent stem cells (iPSCs), provide access to hard-to-obtain cells for studies under physiological and disease conditions. For the study of neurodegenerative diseases, especially sporadic cases where the "disease condition" might be restricted towards the neuroectodermal lineage, obtaining the affected neurons is important to help unravel the underlying molecular mechanism leading to the diseases. Although differentiation of iPSCs to neural lineage allows acquisition of cell types of interest, the technology suffers from low efficiency leading to low yield of neurons. Here, we investigated the potential of adult neuroprogenitor cells (aNPCs) for iPSC derivation and possible confounders such as cell density of infected NPCs on their subsequent neuronal differentiation potential from reprogrammed cells under isogenic conditions. Characterized hiPSCs of defined cell densities generated from aNPCs were subjected to neuronal differentiation on PA6 stromal cells. The results showed that hiPSC clones obtained from low seeding density (iPSC-aNPCLow) differentiated less efficiently compared to those from higher density (iPSC-aNPCHigh). Our findings might help to further improve the yield and quality of neurons for in vitro modelling of neurodegenerative diseases.

5.
Nucleic Acids Res ; 46(14): 7323-7338, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29733375

RESUMO

Adenosine DeAminases acting on RNA (ADAR) catalyzes adenosine-to-inosine (A-to-I) conversion within RNA duplex structures. While A-to-I editing is often dynamically regulated in a spatial-temporal manner, the mechanisms underlying its tissue-selective restriction remain elusive. We have previously reported that transcripts of voltage-gated calcium channel CaV1.3 are subject to brain-selective A-to-I RNA editing by ADAR2. Here, we show that editing of CaV1.3 mRNA is dependent on a 40 bp RNA duplex formed between exon 41 and an evolutionarily conserved editing site complementary sequence (ECS) located within the preceding intron. Heterologous expression of a mouse minigene that contained the ECS, intermediate intronic sequence and exon 41 with ADAR2 yielded robust editing. Interestingly, editing of CaV1.3 was potently inhibited by serine/arginine-rich splicing factor 9 (SRSF9). Mechanistically, the inhibitory effect of SRSF9 required direct RNA interaction. Selective down-regulation of SRSF9 in neurons provides a basis for the neuron-specific editing of CaV1.3 transcripts.


Assuntos
Canais de Cálcio Tipo L/genética , Especificidade de Órgãos/genética , Edição de RNA , Fatores de Processamento de Serina-Arginina/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Animais , Sequência de Bases , Canais de Cálcio Tipo L/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Regulação da Expressão Gênica , Células HEK293 , Humanos , Rim/metabolismo , Camundongos Endogâmicos C57BL , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ratos , Fatores de Processamento de Serina-Arginina/metabolismo
6.
Stem Cells Int ; 2016: 4736159, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26977154

RESUMO

Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by overexpression of the transcription factors OCT4, SOX2, KLF4, and c-Myc holds great promise for the development of personalized cell replacement therapies. In an attempt to minimize the risk of chromosomal disruption and to simplify reprogramming, several studies demonstrated that a reduced set of reprogramming factors is sufficient to generate iPSC. We recently showed that a reduction of reprogramming factors in murine cells not only reduces reprogramming efficiency but also may worsen subsequent differentiation. To prove whether this is also true for human cells, we compared the efficiency of neuronal differentiation of iPSC generated from fetal human neural stem cells with either one (OCT4; hiPSC1F-NSC) or two (OCT4, KLF4; hiPSC2F-NSC) reprogramming factors with iPSC produced from human fibroblasts using three (hiPSC3F-FIB) or four reprogramming factors (hiPSC4F-FIB). After four weeks of coculture with PA6 stromal cells, neuronal differentiation of hiPSC1F-NSC and hiPSC2F-NSC was as efficient as iPSC3F-FIB or iPSC4F-FIB. We conclude that a reduction of reprogramming factors in human cells does reduce reprogramming efficiency but does not alter subsequent differentiation into neural lineages. This is of importance for the development of future application of iPSC in cell replacement therapies.

7.
Stem Cells Transl Med ; 4(10): 1223-33, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26304036

RESUMO

UNLABELLED: Brain perivascular cells have recently been identified as a novel mesodermal cell type in the human brain. These cells reside in the perivascular niche and were shown to have mesodermal and, to a lesser extent, tissue-specific differentiation potential. Mesenchymal stem cells (MSCs) are widely proposed for use in cell therapy in many neurological disorders; therefore, it is of importance to better understand the "intrinsic" MSC population of the human brain. We systematically characterized adult human brain-derived pericytes during in vitro expansion and differentiation and compared these cells with fetal and adult human brain-derived neural stem cells (NSCs) and adult human bone marrow-derived MSCs. We found that adult human brain pericytes, which can be isolated from the hippocampus and from subcortical white matter, are-in contrast to adult human NSCs-easily expandable in monolayer cultures and show many similarities to human bone marrow-derived MSCs both regarding both surface marker expression and after whole transcriptome profile. Human brain pericytes showed a negligible propensity for neuroectodermal differentiation under various differentiation conditions but efficiently generated mesodermal progeny. Consequently, human brain pericytes resemble bone marrow-derived MSCs and might be very interesting for possible autologous and endogenous stem cell-based treatment strategies and cell therapeutic approaches for treating neurological diseases. SIGNIFICANCE: Perivascular mesenchymal stem cells (MSCs) recently gained significant interest because of their appearance in many tissues including the human brain. MSCs were often reported as being beneficial after transplantation in the central nervous system in different neurological diseases; therefore, adult brain perivascular cells derived from human neural tissue were systematically characterized concerning neural stem cell and MSC marker expression, transcriptomics, and mesodermal and inherent neuroectodermal differentiation potential in vitro and in vivo after in utero transplantation. This study showed the lack of an innate neuronal but high mesodermal differentiation potential. Because of their relationship to mesenchymal stem cells, these adult brain perivascular mesodermal cells are of great interest for possible autologous therapeutic use.


Assuntos
Células-Tronco Mesenquimais/citologia , Adulto , Animais , Encéfalo/embriologia , Diferenciação Celular , Linhagem da Célula , Criança , Feminino , Células-Tronco Fetais/citologia , Perfilação da Expressão Gênica , Sobrevivência de Enxerto , Xenoenxertos , Hipocampo/citologia , Humanos , Masculino , Mesoderma , Camundongos , Pessoa de Meia-Idade , Placa Neural , Especificidade de Órgãos , Pericitos/citologia , Transcriptoma , Substância Branca/citologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...