Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 917: 170190, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38278221

RESUMO

The intensive agriculture practices improved the crop productivity but escalated energy inputs (EI) and carbon foot print (CF) which contributes to global warming. Hence designing productive, profitable crop management practices under different production systems with low environmental impact (EI and CF) is the need of the hour. To identify the practices, quantification of baseline emissions and the major sources of emissions are required. Indian agriculture has diversified crops and production systems but there is dearth of information on both EI and CF of these production systems and crops. Hence the present study was an attempt to find hot spots and identify suitable strategies with high productivity, energy use efficiency (EUE) and carbon use efficiency (CUE). Energy and carbon balance of castor, cotton, chickpea, groundnut, maize, rice (both rainfed and irrigated), wheat, sugarcane (only irrigated), pigeon pea, soybean, sorghum, pearl millet (only rainfed) in different production systems was assessed. Field specific data on different crop management practices as well as grain and biomass yields were considered. Rainfed production systems had lower EI and CF than irrigated system. The nonrenewable sources of energy like fertilizer (64 %), irrigation (78 %), diesel fuel (75 %) and electricity (67 %) are the major source of energy input. Rainfed crops recorded higher CUE over irrigated condition. Adoption of technologies like efficient irrigation strategies (micro irrigation), enhancing fertilizer use efficiency (site specific nutrient management or slow release fertilizer), conservation agriculture (conservation or reduced tillage) rice cultivation methods (SRI or Direct seeded rice) were the mitigation strategies. These results will help policy makers and stake holders in adoption of suitable strategies for sustainable intensification.

2.
Front Microbiol ; 14: 1102682, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396355

RESUMO

Soil microbial communities are important drivers of biogeochemical cycling of nutrients, organic matter decomposition, soil organic carbon, and Greenhouse gas emissions (GHGs: CO2, N2O, and CH4) and are influenced by crop and soil management practices. The knowledge on the impact of conservation agriculture (CA) on soil bacterial diversity, nutrient availability, and GHG emissions in semi-arid regions under rainfed conditions is vital to develop sustainable agricultural practices, but such information has not been systemically documented. Hence, studies were conducted for 10 years in rainfed pigeonpea (Cajanus cajan L.)-castor bean (Ricinus communis L.) cropping system under semi-arid conditions to assess the effects of tillage and crop residue levels on the soil bacterial diversity, enzyme activity (Dehydrogenase, urease, acid phosphatase, and alkaline phosphatase), GHG emissions, and soil available nutrients (Nitrogen, phosphorus, and potassium). Sequencing of soil DNA through Illumina HiSeq-based 16S rRNA amplicon sequencing technology has revealed that bacterial community responded to both tillage and residue levels. The relative abundance of Actinobacteria in terms of Operational Taxonomic Unit (OTUs) at phyla, class as well as genera level was higher in CA (NTR1: No Tillage + 10 cm anchored residue and NTR2 NT + 30 cm anchored residue) over CT (conventional tillage without crop residues). CA resulted in higher enzyme activities (dehydrogenase, urease, acid phosphatase, and alkaline phosphatase) and reduction in GHG emissions over CT. CA recorded 34% higher and 3% lower OC, as compared to CT, and CTR1, respectively. CA recorded 10, 34, and 26% higher available nitrogen, phosphorus, and potassium over CT and CTR1, respectively. NTR1 recorded 25 and 38% lower N2O emissions as compared to CTR1 and CTR2, respectively. Whereas only NT recorded 12% higher N2O emissions as compared to CT. Overall, the results of the study indicate that CA improves the relative abundance of soil bacterial communities, nutrient availability, and enzyme activities, and may help to contribute to the mitigation of climate change, and sustainability in rainfed areas.

3.
Sci Rep ; 13(1): 6788, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37100788

RESUMO

Gram pod borer, Helicoverpa armigera (Hub.) is the major insect pest of pigeonpea and prediction of number of generations (no. of gen.) and generation time (gen. time) using growing degree days (GDD) approach during three future climate change periods viz., Near (NP), Distant (DP) and Far Distant (FDP) periods at eleven major pigeonpea growing locations of India was attempted. Multi-model ensemble of Maximum (Tmax) and Minimum (Tmin) temperature data of four Representative Concentration Pathways viz., RCP 2.6, 4.5, 6.0 and 8.5 of Coupled Model Inter comparison Project 5 (CMIP5) models was adopted here. The increase in projected Tmax and Tmin are significant during 3 climate change periods (CCPs) viz., the NP, DP and FDP over base line (BL) period under four RCP scenarios at all locations and would be higher (4.7-5.1 °C) in RCP 8.5 and in FDP. More number of annual (10-17) and seasonal (5-8) gens. are expected to occur with greater percent increase in FDP (8 to 38%) over base line followed by DP (7 to 22%) and NP (5to 10%) periods with shortened annual gen. time (4 to 27%) across 4 RCPs. The reduction of crop duration was substantial in short, medium and long duration pigeonpeas at all locations across 4 RCPs and 3 CCPs. The seasonal no.of gen. is expected to increase (5 to 35%) with shortened gen. time (4 to 26%) even with reduced crop duration across DP and FDP climate periods of 6.0 and 8.5 RCPs in LD pigeonpea. More no. of gen. of H. armigera with reduced gen. time are expected to occur at Ludhiana, Coimbatore, Mohanpur, Warangal and Akola locations over BL period in 4 RCPs when normal duration of pigeonpeas is considered. Geographical location (66 to 72%), climate period (11 to 19%), RCPs (5-7%) and their interaction (0.04-1%) is vital and together explained more than 90% of the total variation in future pest scenario. The findings indicate that the incidence of H. armigera would be higher on pigeonpea during ensuing CCPs in India under global warming context.


Assuntos
Mudança Climática , Mariposas , Animais , Aquecimento Global , Temperatura , Índia
4.
J Appl Toxicol ; 33(10): 1165-79, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23702825

RESUMO

In the near future, nanotechnology is envisaged for large-scale use. Hence health and safety issues of nanoparticles (NPs) should be promptly addressed. Twenty-eight-day oral toxicity, genotoxicity, biochemical alterations, histopathological changes and tissue distribution of nano and microparticles (MPs) of manganese oxide (MnO2 ) in Wistar rats was studied. Genotoxicity was assessed using comet, micronucleus and chromosomal aberration assays. The results demonstrated a significant increase in DNA damage in leukocytes, micronuclei and chromosomal aberrations in bone marrow cells after exposure of MnO2 -NPs at 1000, 300 mg kg(-1) bw per day and MnO2 -MPs at the dose of 1000 mg kg(-1) bw per day. Our findings showed acetylcholinestrase inhibition at 1000 as well as at 300 mg kg(-1) bw per day in blood and with all the doses in the brain indicating the toxicity of MnO2 -NPs. Further, the doses significantly inhibited different ATPases in the brain P2 fraction. Significant changes were observed in aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) in the liver, kidney and serum in a dose-dependent manner. MnO2 -MPs at 1000 mg kg(-1) bw per day were found to induce significant alterations in biochemical enzymes. A significant distribution was found in all the tissues in a dose-dependent manner. MnO2 -NPs showed a much higher absorptivity and tissue distribution as compared with MnO2 -MPs. A large fraction of MnO2 -NPs and MnO2 -MPs was cleared by urine and feces. Histopathological analysis revealed that MnO2 -NPs caused alterations in liver, spleen, kidney and brain. The MnO2 -NPs induced toxicity at lower doses compared with MnO2 -MPs. Further, this study did not display gender differences after exposure to MnO2 -NPs and MnO2 -MPs. Therefore, the results suggested that prolonged exposure to MnO2 has the potential to cause genetic damage, biochemical alterations and histological changes.


Assuntos
Nanopartículas Metálicas/toxicidade , Óxidos/toxicidade , Administração Oral , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Aberrações Cromossômicas , Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Feminino , Rim/efeitos dos fármacos , Rim/patologia , L-Lactato Desidrogenase/sangue , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Compostos de Manganês , Nanopartículas Metálicas/química , Testes para Micronúcleos , Ratos , Ratos Wistar , Baço/efeitos dos fármacos , Baço/patologia , Distribuição Tecidual , Testes de Toxicidade Subcrônica
5.
Mutat Res ; 754(1-2): 39-50, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23618923

RESUMO

The use of nanotechnology has led to rapid growth in various areas. Manganese oxide (MnO2) nanomaterials (NMs) are typically used for biomedical applications. However, characterizing the potential human health effects of MnO2 NMs is required before fully exploiting these materials. The aim of this study was to investigate the acute oral toxicity of MnO2 NMs and MnO2-bulk particles in female albino Wistar rats. The genotoxic effects were examined using comet, micronucleus and chromosomal aberration assays. Nanosized MnO2 (45nm) significantly (p<0.01) increased DNA damage in peripheral blood leukocytes and micronuclei and enhanced chromosomal aberrations in the bone marrow cells at 1000mg/kg bw. These findings showed that the neurotoxicity of MnO2-45nm in the brain and red blood cells, as determined through acetylcholinesterase activity, was significantly (p<0.01) inhibited at 1000 and 500mg/kg bw doses. MnO2-45nm disrupted the physicochemical state and neurological system of the animals through alterations in ATPases via the total Na(+)-K(+), Mg(2+) and Ca(2+) levels in the brain P2 fraction. In addition, 500 and 1000mg/kg bw doses of MnO2-45nm caused significant changes in AST, ALT and LDH levels in the liver, kidney and serum of treated rats. Significant tissue distribution was found in all tissues in a dose- and time-dependent manner. MnO2-45nm exhibited much higher absorptivity and tissue distribution compared with MnO2-bulk. A large fraction of MnO2-45nm was cleared in the urine and feces. The histopathological analysis revealed that MnO2-45nm caused alterations in the liver, spleen and brain. These findings will provide fundamental information regarding the potential toxicities and biodistribution of nano and bulk MnO2 generated through acute oral treatment.


Assuntos
Óxidos/toxicidade , Administração Oral , Animais , Peso Corporal/efeitos dos fármacos , Aberrações Cromossômicas , Ensaio Cometa , Comportamento Alimentar , Feminino , Compostos de Manganês/administração & dosagem , Compostos de Manganês/farmacocinética , Testes para Micronúcleos , Microscopia Eletrônica de Transmissão , Tamanho do Órgão/efeitos dos fármacos , Óxidos/administração & dosagem , Óxidos/farmacocinética , Tamanho da Partícula , Ratos , Ratos Wistar , Distribuição Tecidual
6.
J Nanosci Nanotechnol ; 12(3): 2149-59, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22755032

RESUMO

Iron oxide (Fe2O3) nanoparticles are widely used in different fields of nanotechnology. However, studies on its toxicological effects in humans and the environment are scarce. Therefore in this investigation 28 days repeated dose oral toxicity studies were conducted on Fe2O3-30 nanoparticles and its counterpart Fe2O3-Bulk with special reference to target biochemical enzymes and histopathological changes in different tissues of female albino Wistar rats. The alterations observed after Fe2O3-30 treatment in various tissues of exposed rats were dose dependent. Low dose was less effective than medium and high doses with low dose demonstrating "no observed adverse effect" (NOAEL). Further, high dose treated rats showed toxic sign and symptoms but no mortality. Due to the repeated doses of Fe2O3-30 nanoparticles, significant inhibition was observed in total, Na(+)-K+, Mg2+ and Ca(2+)-ATPases in brain of exposed rats. Similarly, significant inhibition was recorded in RBC and brain acetylcholinesterase indicating that both synaptic transmission and nerve conduction were affected by this compound. Fe2O3-30 significantly increased aspartate amino transferase, alanine amino transferase and lactate dehydrogenase in serum and liver, whereas, these enzymes were significantly decreased in kidney indicating tissue necrosis and possible leakage of these enzymes into the blood stream. Increased levels of these enzymes in liver as well as in serum might be an adaptive mechanism due to the stress of iron nanoparticles. High dose treated rats of Fe2O3-30 showed dilated central vein, perivascular round cell collections in liver along with focal areas of necrosis, whereas kidney showed focal tubular damage and red pulp congestion, whereas prominent white pulp indices were observed in spleen. However, histopathological analysis of heart and brain tissues failed to show any adverse changes in their architecture exposed to repeated doses of Fe2O3-30 when compared with controls. Fe2O3-Bulk did not induce any adverse effects in either biochemical parameters or histopathology in the treated rats and the changes observed were near to controls and mostly insignificant, indicating that the counter part of nanoparticles i.e., bulk material is less potent than the nanoparticles in causing toxicity in the exposed animals. These results suggested that as particle size decreases, this iron nanoparticle showed increased toxicity, even though the same material is relatively inert in bulk form. The changes observed in these target enzyme activities could be useful as biomarkers of exposure to nanoparticles.


Assuntos
Compostos Férricos/toxicidade , Nanopartículas Metálicas/toxicidade , Adenosina Trifosfatases/metabolismo , Administração Oral , Animais , Feminino , Compostos Férricos/administração & dosagem , Microscopia Eletrônica de Transmissão , Nível de Efeito Adverso não Observado , Ratos , Ratos Wistar , Transmissão Sináptica , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA