Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 167(2): 218-247, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37694499

RESUMO

Traumatic brain injury (TBI) causes significant neurological deficits and long-term degenerative changes. Primary injury in TBI entails distinct neuroanatomical zones, i.e., contusion (Ct) and pericontusion (PC). Their dynamic expansion could contribute to unpredictable neurological deterioration in patients. Molecular characterization of these zones compared with away from contusion (AC) zone is invaluable for TBI management. Using proteomics-based approach, we were able to distinguish Ct, PC and AC zones in human TBI brains. Ct was associated with structural changes (blood-brain barrier (BBB) disruption, neuroinflammation, axonal injury, demyelination and ferroptosis), while PC was associated with initial events of secondary injury (glutamate excitotoxicity, glial activation, accumulation of cytoskeleton proteins, oxidative stress, endocytosis) and AC displayed mitochondrial dysfunction that could contribute to secondary injury events and trigger long-term degenerative changes. Phosphoproteome analysis in these zones revealed that certain differentially phosphorylated proteins synergistically contribute to the injury events along with the differentially expressed proteins. Non-synaptic mitochondria (ns-mito) was associated with relatively more differentially expressed proteins (DEPs) compared to synaptosomes (Syn), while the latter displayed increased protein oxidation including tryptophan (Trp) oxidation. Proteomic analysis of immunocaptured complex I (CI) from Syn revealed increased Trp oxidation in Ct > PC > AC (vs. control). Oxidized W272 in the ND1 subunit of CI, revealed local conformational changes in ND1 and the neighboring subunits, as indicated by molecular dynamics simulation (MDS). Taken together, neuroanatomical zones in TBI show distinct protein profile and protein oxidation representing different primary and secondary injury events with potential implications for TBI pathology and neurological status of the patients.

2.
Neurochem Res ; 48(8): 2360-2389, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36964824

RESUMO

Mitochondrial dysfunction and oxidative stress are critical to neurodegeneration in Parkinson's disease (PD). Mitochondrial dysfunction in PD entails inhibition of the mitochondrial complex I (CI) in the dopaminergic neurons of substantia nigra. The events contributing to CI inhibition and downstream pathways are not completely elucidated. We conducted proteomic analysis in a dopaminergic neuronal cell line exposed individually to neurotoxic CI inhibitors: rotenone (Rot), paraquat (Pq) and 1-methyl-4-phenylpyridinium (MPP+). Mass spectrometry (MS) revealed the involvement of biological processes including cell death pathways, structural changes and metabolic processes among others, most of which were common across all models. The proteomic changes induced by Pq were significantly higher than those induced by Rot and MPP+. Altered metabolic processes included downregulated mitochondrial proteins such as CI subunits. MS of CI isolated from the models revealed oxidative post-translational modifications with Tryptophan (Trp) oxidation as the predominant modification. Further, 62 peptides in 22 subunits of CI revealed Trp oxidation with 16 subunits common across toxins. NDUFV1 subunit had the greatest number of oxidized Trp and Rot model displayed the highest number of Trp oxidation events compared to the other models. Molecular dynamics simulation (MDS) of NDUFV1 revealed that oxidized Trp 433 altered the local conformation thereby changing the distance between the Fe-S clusters, Fe-S 301(N1a) to Fe-S 502 (N3) and Fe-S 802 (N4) to Fe-S 801 (N5), potentially affecting the efficiency of electron transfer. The events triggered by the neurotoxins represent CI damage, mitochondrial dysfunction and neurodegeneration in PD.


Assuntos
Neurônios Dopaminérgicos , Doença de Parkinson , Humanos , Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/metabolismo , Proteômica , Morte Celular , Paraquat/toxicidade , 1-Metil-4-fenilpiridínio/toxicidade , Rotenona/toxicidade , Complexo I de Transporte de Elétrons/metabolismo
3.
Free Radic Biol Med ; 193(Pt 1): 34-57, 2022 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-36195160

RESUMO

Selective neuronal vulnerability (SNV) of specific neuroanatomical regions such as frontal cortex (FC) and hippocampus (HC) is characteristic of age-associated neurodegenerative diseases (NDDs), although its pathogenetic basis remains unresolved. We hypothesized that physiological differences in mitochondrial function in neuroanatomical regions could contribute to SNV. To investigate this, we evaluated mitochondrial function in human brains (age range:1-90 y) in FC, striatum (ST), HC, cerebellum (CB) and medulla oblongata (MD), using enzyme assays and quantitative proteomics. Striking differences were noted in resistant regions- MD and CB compared to the vulnerable regions- FC, HC and ST. At younger age (25 ± 5 y), higher activity of electron transport chain enzymes and upregulation of metabolic and antioxidant proteins were noted in MD compared to FC and HC, that was sustained with increasing age (≥65 y). In contrast, the expression of synaptic proteins was higher in FC, HC and ST (vs. MD). In line with this, quantitative phospho-proteomics revealed activation of upstream regulators (ERS, PPARα) of mitochondrial metabolism and inhibition of synaptic pathways in MD. Microtubule Associated Protein Tau (MAPT) showed overexpression in FC, HC and ST both in young and older age (vs. MD). MAPT hyperphosphorylation and the activation of its kinases were noted in FC and HC with age. Our study demonstrates that regional heterogeneity in mitochondrial and other cellular functions contribute to SNV and protect regions such as MD, while rendering FC and HC vulnerable to NDDs. The findings also support the "last in, first out" hypothesis of ageing, wherein regions such as FC, that are the most recent to develop phylogenetically and ontogenetically, are the first to be affected in ageing and NDDs.


Assuntos
Encéfalo , Doenças Neurodegenerativas , Humanos , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Encéfalo/metabolismo , Envelhecimento/genética , Mitocôndrias/metabolismo , Hipocampo/metabolismo , Doenças Neurodegenerativas/metabolismo
4.
Neurochem Res ; 47(6): 1610-1636, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35229271

RESUMO

Rabies is a fatal encephalitis caused by the Rabies lyssavirus (RABV). The presence of minimal neuropathological changes observed in rabies indicates that neuronal dysfunction, rather than neuronal death contributes to the fatal outcome. The role of mitochondrial changes has been suggested as a possible mechanism for neuronal dysfunction in rabies. However, these findings are mostly based on studies that have employed experimental models and laboratory-adapted virus. Studies on brain tissues from naturally infected human and animal hosts are lacking. The current study investigated the role of mitochondrial changes in rabies by morphological, biochemical and proteomic analysis of RABV-infected human and canine brains. Morphological analysis showed minimal inflammation with preserved neuronal and disrupted mitochondrial structure in both human and canine brains. Proteomic analysis revealed involvement of mitochondrial processes (oxidative phosphorylation, cristae formation, homeostasis and transport), synaptic proteins and autophagic pathways, with over-expression of subunits of mitochondrial respiratory complexes. Consistent with these findings, human and canine brains displayed elevated activities of complexes I (p < 0.05), IV (p < 0.05) and V (p < 0.05). However, this did not result in elevated ATP production (p < 0.0001), probably due to lowered mitochondrial membrane potential as noted in RABV-infected cells in culture. These could lead to mitochondrial dysfunction and mitophagy as indicated by expression of FKBP8 (p < 0.05) and PINK1 (p < 0.001)/PARKIN (p > 0.05) and ensuing autophagy, as shown by the status of LCIII (p < 0.05), LAMP1 (p < 0.001) and pertinent ultrastructural markers. We propose that altered mitochondrial bioenergetics and cristae architecture probably induce mitophagy, leading to autophagy and consequent neuronal dysfunction in rabies.


Assuntos
Vírus da Raiva , Raiva , Animais , Encéfalo/metabolismo , Cães , Humanos , Mitocôndrias/metabolismo , Proteômica , Raiva/metabolismo , Raiva/patologia , Vírus da Raiva/fisiologia
5.
Exp Brain Res ; 240(4): 1127-1138, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35141770

RESUMO

Repeated exposure to adverse experiences in early life, termed Early Life Stress (ELS), can increase anxiety disorders later in life. Anxiety is directly associated with curiosity, a form of intrinsic drive state associated with increased novelty-seeking behaviour and risk taking for challenging opportunities and could probably modulate learning and memory. In humans, elevated curiosity during adolescence tends to elicit increased exploration, novelty seeking, high risk-taking behaviour and heightened emotionality. Such behaviours are beneficial in maintaining social skills and cognitive functions later in life. We investigated whether ELS-induced anxiety impacts curiosity-like behaviour at adolescence in an animal model. ELS was induced by subjecting Sprague Dawley rat pups to maternal separation and isolation (MS) stress during the stress hyporesponsive period (SHRP) from post-natal days (PND) 4-PND 14. This rat model was tested for anxiety, spontaneous exploratory behaviour and curiosity-like behaviour in a custom-designed arena during adolescence (PND 30-45). ELS-induced changes in the stress were confirmed by corticosterone, while, basal dopamine level was estimated to understand the neurochemical basis of MS stress-induced changes in curiosity. We observed an increase in the levels of anxiety and intrinsic drive state such as curiosity-like behaviour, which was associated with elevated plasma corticosterone and dopamine in MS animals during adolescence suggesting the impact of ELS during SHRP on adolescent behaviour.


Assuntos
Experiências Adversas da Infância , Comportamento Exploratório , Animais , Ansiedade/etiologia , Ansiedade/psicologia , Transtornos de Ansiedade , Corticosterona , Dopamina , Humanos , Privação Materna , Ratos , Ratos Sprague-Dawley , Estresse Psicológico/psicologia
6.
Neurochem Int ; 140: 104851, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32976906

RESUMO

Neurodegenerative disorders are common among aging populations around the globe. Most are characterized by loss of neurons, protein aggregates, oxidative stress, mitochondrial damage, neuroinflammation among others. Although symptomatic treatment using conventional pharmacotherapy has been widely employed, their therapeutic success is limited due to varied reasons. In the need to identify an alternative approach, researchers successfully demonstrated the therapeutic utility of plant-derived nutraceuticals in cell and animal models of neurodegenerative conditions. However, most nutraceuticals failed during clinical trials in humans owing to their poor bioavailability in vivo and limited permeability across the blood brain barrier (BBB). The current emphasis is therefore on the improved delivery of nutraceuticals to the brain. In this regard, development of nanoparticle conjugated nutraceuticals to enhance bioavailability and therapeutic efficacy in the brain has gained attention. Here, we review the research advances in nanoparticles conjugated nutraceuticals applied in neurodegenerative disorders and discuss their advantages and limitations, clinical trials and toxicity concerns.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Suplementos Nutricionais , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/administração & dosagem , Nanopartículas/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Humanos
7.
Neurochem Int ; 140: 104846, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32927024

RESUMO

Mitochondrial dysfunction is critical for neurodegeneration in movement disorders. Neurotoxicological models recapitulating movement disorder involve mitochondrial damage including inhibition of mitochondrial complexes. Previously, we demonstrated that neurotoxic models of Parkinson's disease and Manganism showed distinct morphological, electrophysiological and molecular profile indicating disease-specific characteristics. In a recent study, we demonstrated that the transcriptomic changes triggered by the neurotoxic mitochondrial complex II inhibitor 3-nitropropionic acid (3-NPA), was significantly different from the profile induced by the neurotoxic mitochondrial complex I inhibitor 1-methyl-4- phenylpyridinium (MPP+) and mitochondrial toxin Manganese (Mn). Among the plausible pathways, we surmised that epigenetic mechanisms could contribute to 3-NPA specific transcriptomic profile. To address this, we assessed global and individual lys-specific acetylation profile of Histone H3 and H4 in the 3-NPA neuronal cell model. Our data revealed histone acetylation profile unique to the 3-NPA model that was not noted in the MPP+ and Mn models. Among the individual lys, Histone H3K56 showed robust dose and time-dependent hyperacetylation in the 3-NPA model. Chromatin Immunoprecipitation-sequencing (ChIP-seq) revealed that acetylated H3K56 was associated with 13072 chromatin sites, which showed increased occupancy in the transcription start site-promoter site. Acetylated histone H3K56 was associated with 1747 up-regulated and 263 down-regulated genes in the 3-NPA model, which included many up-regulated autophagy and mitophagy genes. Western analysis validated the involvement of PINK1-Parkin dependent mitophagy in the 3-NPA model. We propose that 3-NPA specific chromatin dynamics could contribute to the unique transcriptomic profile with implications for movement disorders.


Assuntos
Histonas/metabolismo , Degeneração Neural/induzido quimicamente , Degeneração Neural/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Nitrocompostos/toxicidade , Propionatos/toxicidade , Acetilação/efeitos dos fármacos , Animais , Linhagem Celular , Neurônios/patologia , Ratos
8.
J Proteomics ; 211: 103556, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31655151

RESUMO

Analysis of human muscle diseases highlights the role of mitochondrial dysfunction in the skeletal muscle. Our previous work revealed that diverse upstream events correlated with altered mitochondrial proteome in human muscle biopsies. However, several proteins showed relatively unchanged expression suggesting that post-translational modifications, mainly protein phosphorylation could influence their activity and regulate mitochondrial processes. We conducted mitochondrial phosphoprotein profiling, by proteomics approach, of healthy human skeletal muscle (n = 10) and three muscle diseases (n = 10 each): Dysferlinopathy, Polymyositis and Distal Myopathy with Rimmed Vacuoles. Healthy human muscle mitochondrial proteins displayed 253 phosphorylation sites (phosphosites), which contributed to metabolic and redox processes and mitochondrial organization etc. Electron transport chain complexes accounted for 84 phosphosites. Muscle pathologies displayed 33 hyperphosphorylated and 14 hypophorphorylated sites with only 5 common proteins, indicating varied phosphorylation profile across muscle pathologies. Molecular modelling revealed altered local structure in the phosphorylated sites of Voltage-Dependent Anion Channel 1 and complex V subunit ATP5B1. Molecular dynamics simulations in complex I subunits NDUFV1, NDUFS1 and NDUFV2 revealed that phosphorylation induced structural alterations thereby influencing electron transfer and potentially altering enzyme activity. We propose that altered phosphorylation at specific sites could regulate mitochondrial protein function in the skeletal muscle during physiological and pathological processes.


Assuntos
Proteínas Mitocondriais , Músculo Esquelético , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Fosfoproteínas/metabolismo , Fosforilação
9.
Bioorg Chem ; 92: 103281, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31561106

RESUMO

Sirtuins (SIRTs), class III HDAC (Histone deacetylase) family proteins, are associated with cancer, diabetes, and other age-related disorders. SIRT1 and SIRT2 are established therapeutic drug targets by regulating its function either by activators or inhibitors. Compounds containing indole moiety are potential lead molecules inhibiting SIRT1 and SIRT2 activity. In the current study, we have successfully synthesized 22 indole derivatives in association with an additional triazole moiety that provide better anchoring of the ligands in the binding cavity of SIRT1 and SIRT2. In-vitro binding and deacetylation assays were carried out to characterize their inhibitory effects against SIRT1 and SIRT2. We found four derivatives, 6l, 6m, 6n, and 6o to be specific for SIRT1 inhibition; three derivatives, 6a, 6d and 6k, specific for SIRT2 inhibition; and two derivatives, 6s and 6t, which inhibit both SIRT1 and SIRT2. In-silico validation for the selected compounds was carried out to study the nature of binding of the ligands with the neighboring residues in the binding site of SIRT1. These derivatives open up newer avenues to explore specific inhibitors of SIRT1 and SIRT2 with therapeutic implications for human diseases.


Assuntos
Desenho de Fármacos , Inibidores de Histona Desacetilases/farmacologia , Indóis/farmacologia , Simulação de Acoplamento Molecular , Sirtuína 1/antagonistas & inibidores , Sirtuína 2/antagonistas & inibidores , Relação Dose-Resposta a Droga , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Indóis/síntese química , Indóis/química , Estrutura Molecular , Sirtuína 1/metabolismo , Sirtuína 2/metabolismo , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
10.
Sci Rep ; 9(1): 10694, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337785

RESUMO

Muscle diseases display mitochondrial dysfunction and oxidative damage. Our previous study in a cardiotoxin model of myodegeneration correlated muscle damage with mitochondrial dysfunction, which in turn entailed altered mitochondrial proteome and oxidative damage of mitochondrial proteins. Proteomic identification of oxidized proteins in muscle biopsies from muscular dystrophy patients and cardiotoxin model revealed specific mitochondrial proteins to be targeted for oxidation. These included respiratory complexes which displayed oxidative modification of Trp residues in different subunits. Among these, Ubiquinol-Cytochrome C Reductase Core protein 1 (UQCRC1), a subunit of Ubiquinol-Cytochrome C Reductase Complex or Cytochrome b-c1 Complex or Respiratory Complex III displayed oxidation of Trp395, which could be correlated with the lowered activity of Complex III. We hypothesized that Trp395 oxidation might contribute to altered local conformation and overall structure of Complex III, thereby potentially leading to altered protein activity. To address this, we performed molecular dynamics simulation of Complex III (oxidized at Trp395 of UQCRC1 vs. non-oxidized control). Molecular dynamic simulation analyses revealed local structural changes in the Trp395 site. Intriguingly, oxidized Trp395 contributed to decreased plasticity of Complex III due to significant cross-talk among the subunits in the matrix-facing region and subunits in the intermembrane space, thereby leading to impaired electron flow from cytochrome C.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Doenças Musculares/metabolismo , Triptofano/metabolismo , Animais , Citocromos c/metabolismo , Camundongos , Simulação de Dinâmica Molecular , Doenças Musculares/patologia , Oxirredução
11.
J Chem Neuroanat ; 95: 13-28, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29499254

RESUMO

In eukaryotes, mitochondrial complex I (NADH: ubiquinone oxidoreductase; CI) is central to oxidative phosphorylation (OXPHOS). Mammalian CI is a 45 subunit complex that forms supercomplexes with other OXPHOS complexes. Since CI defects are associated with aging and neurodegeneration, it is pertinent to understand its structure-function relationship. Although genetic mutations could lower CI activity causing mitochondrial dysfunction in several pathologies, post-translational modifications (PTMs) have emerged as a key mechanism contributing to altered CI activity. Among non-oxidative PTMs, protein phosphorylation is the most intricate regulatory mechanism controlling CI structure and function during normal physiology, aging and neurodegeneration. To comprehend this, we carried out a comprehensive bioinformatics analysis of protein phosphorylation of human CI subunits using software-based prediction of phosphorylation (phospho) sites and associated kinases. Phosphorylation was higher among core subunits and active domains of the complex. Among the subunits, NDUFS1 displayed significantly higher number as well as percent phospho sites compared to others. Analysis of the subunits containing iron-sulfur (Fe-S) cluster, NADH and FMN binding sites and quinone binding sites indicated the presence of phospho sites in close proximity to the binding sites of these cofactors with potential functional implications. Phosphoproteomics experiment in rat and human muscle mitochondria identified specific phospho sites in CI subunits, thereby validating the bioinformatic analysis. Molecular modeling of CI subunits indicated structural implications following phosphorylation. We surmise that protein phosphorylation, a transient and regulatory event could influence the structure-function relationship of CI thereby impinging on bioenergetics and ultimately contributing to aging and neurodegeneration.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Degeneração Neural/metabolismo , Fosforilação/fisiologia , Animais , Biologia Computacional , Complexo I de Transporte de Elétrons/química , Metabolismo Energético/fisiologia , Humanos , Modelos Moleculares , Ratos , Relação Estrutura-Atividade
12.
Cytotechnology ; 70(4): 1143-1154, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29546682

RESUMO

Increased telomerase activity can be blocked by targeting the hTERT activity at both RNA and catalytic subunits. Various inhibitors had been used to regulate hTERT activity in glioblastoma cell lines and showed promising results. The present study hypothesized that the telomerase specific inhibitor BIBR1532 can effectively down-regulate the telomerase activity in LN18 glioblastoma cell line. LN18 glioblastoma cell line was treated with various concentrations of BIBR1532 at different time intervals. MTT assay was performed to determine cell viability after BIBR1532 treatment. hTERT mRNA and protein expression were determined by qRT-PCR and western blotting, respectively. Flow cytometry and TRAP assay was performed to detect the rate of apoptosis and telomerase activity in treated and control samples. One-way ANOVA was performed to compare the mean values of variables in control and BIBR1532 treated groups. LN18 cells showed a significant dose dependent cytotoxic effect after treatment with BIBR1532. hTERT mRNA expression in cells treated with 25, 100 and 200 µM BIBR1532 treated groups was decreased ~ 21, ~ 61.2, and ~ 77%, respectively (p < 0.05). We also observed that, BIBR1532 treatment reduced the expression of hTERT protein in LN18 cells in a dose dependent manner. The Flow cytometry data showed that, the drug induced significant increase in the total percentage of apoptotic cells with 200 µM concentration of BIBR1532 at all time points. BIBR1532 exhibited potent inhibition of telomerase activity in a dose-dependent manner in LN18 cells. BIBR1532 could induce apoptosis in LN18 cells through the downregulation of telomerase activity at transcriptional and translational level. We conclude that BIBR1532 may be a therapeutic agent to suppress telomerase activity, however, further efforts are necessary in order to explore this therapeutic strategy.

13.
Clin Neurol Neurosurg ; 164: 182-189, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29272804

RESUMO

OBJECTIVES: Studies exploring the outcome of epilepsy in patients with mitochondrial disorders are limited. This study examined the outcome of epilepsy in patients with mitochondrial disorders and its relation with the clinical phenotype, genotype and magnetic resonance imaging findings. PATIENTS AND METHODS: The cohort was derived from the database of 67 patients with definite genetic diagnosis of mitochondrial disorders evaluated over a period of 11years (2006-2016). Among this, 27 had epilepsy and were included in final analysis. Data were analyzed with special reference to clinical phenotypes, genotypes, epilepsy characteristics, EEG findings, anti epileptic drugs used, therapeutic response, and magnetic resonance imaging findings. Patients were divided into three groups according to the seizure frequency at the time of last follow up: Group I- Seizure free; Group II- Infrequent seizures; Group III- uncontrolled seizures. For each group the clinical phenotype, genotype, magnetic resonance imaging and duration of epilepsy were compared. RESULTS: The phenotypes & genotypes included Mitochondrial Encephalopathy Lactic Acidosis and Stroke like episodes (MELAS) & m.3243A>G mutation (n = 10), Myoclonic Epilepsy Ragged Red Fiber syndrome (MERRF) & m.8344A>G mutation (n = 4), Chronic Progressive External Ophthalmoplegia plus &POLG1 mutation (CPEO, n = 6), episodic neuroregression due to nuclear mutations (n = 6; NDUFV1 (n = 3), NDUFA1, NDUFS2, MPV17-1 one each), and one patient with infantile basal ganglia stroke syndrome, mineralizing angiopathy &MT-ND5 mutations. Seven patients (25.9%) were seizure free; seven had infrequent seizures (25.9%), while thirteen (48.1%) had frequent uncontrolled seizures. Majority of the subjects in seizure free group had episodic neuroregression & leukoencephalopathy due to nuclear mutations (85.7%). Patients in group II with infrequent seizures had CPEO, POLG1 mutation and a normal MRI (71%) while 62% of the subjects in group III had MELAS, m.3243A>G mutation and stroke like lesions on MRI. CONCLUSIONS: A fair correlation exists between the outcome of epilepsy, clinical phenotypes, genotypes and magnetic resonance imaging findings in patients with mitochondrial disorders. The recognition of these patterns is important clinically because of the therapeutic and prognostic implications.


Assuntos
Epilepsia/diagnóstico por imagem , Genótipo , Imageamento por Ressonância Magnética , Doenças Mitocondriais/diagnóstico por imagem , Fenótipo , Adolescente , Adulto , Criança , Estudos de Coortes , Eletroencefalografia/métodos , Epilepsia/fisiopatologia , Epilepsia/terapia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Doenças Mitocondriais/fisiopatologia , Doenças Mitocondriais/terapia , Resultado do Tratamento , Adulto Jovem
14.
J Alzheimers Dis ; 60(s1): S69-S86, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28582861

RESUMO

Mitochondrial complex I (NADH: ubiquinone oxidoreductase; CI) is central to the electron transport chain (ETC), oxidative phosphorylation, and ATP production in eukaryotes. CI is a multi-subunit complex with a complicated yet organized structure that optimally connects electron transfer with proton translocation and forms higher-order supercomplexes with other ETC complexes. Efforts to understand the molecular genetics, expression profile of subunits, and structure-function relationship of CI have increased over the years due to the direct role of the complex in human diseases. Although mutations in the nuclear and mitochondrial genes of CI and altered expression of subunits could potentially lower CI activity leading to mitochondrial dysfunction in many diseases, oxidative post-translational modifications (PTMs) have emerged as an important mechanism contributing to altered CI activity. These mainly include reversible and irreversible cysteine modifications, tyrosine nitration, carbonylation, and tryptophan oxidation that are generated following exposure to reactive oxygen species/reactive nitrogen species. Interestingly, oxidative PTMs could contribute either to CI damage, mitochondrial dysfunction, and ensuing cell death or a response mechanism with potential cytoprotective effects. This has also emerged as a promising field for structural biologists since analysis of PTMs could assist in understanding the structure-function relationship of the complex and correlate electron transfer mechanism with energy production. However, analysis of PTMs of CI and their contribution to CI function are incomplete in many physiological and pathological conditions. This review aims to highlight the role of oxidative PTMs in modulating CI activity with implications toward pathobiology of CNS diseases and novel therapeutics.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Humanos , Oxirredução , Fosforilação Oxidativa , Estresse Oxidativo/fisiologia
16.
Metab Brain Dis ; 32(4): 967-970, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28374236

RESUMO

Reports on magnetic resonance imaging findings in patients with short chain acyl -Coenzyme A dehydrogenase (SCAD) deficiency, an autosomal recessive disorder caused by mutations in the acyl-Coenzyme A dehydrogenase (ACADS), are limited. Many asymptomatic carriers of ACAD variants have also been described necessitating careful evaluation of clinical and biochemical findings for an accurate diagnosis. Here we report a an infant with short chain acyl -Coenzyme A dehydrogenase (SCAD) deficiency diagnosed based on the characteristic biochemical findings and confirmed by genetic testing. He presented with refractory seizures and neuro regression at 4 months of age. His metabolic work up revealed elevated butyryl carnitine in plasma and ethyl malonic acid in urine. Magnetic resonance imaging of the brain showed cortical and basal ganglia signal changes with cortical swelling. Serial scans showed progression of the lesions resulting in cystic leukomalacia with brain atrophy. Exome sequencing revealed a novel homozygous nonsense variation, c.1146C > G (p.Y382Ter) in exon ten of ACADS which was further validated by Sanger sequencing. Both parents were heterozygous carriers. Follow up at 15 months showed gross psychomotor retardation and refractory seizures despite being on optimal doses of anti-epileptic medications, carnitine and multivitamin supplementation. This report expands the phenotypic and genotypic spectrum of SCAD deficiency.


Assuntos
Acil-CoA Desidrogenase/deficiência , Encéfalo/diagnóstico por imagem , Leucomalácia Periventricular/diagnóstico por imagem , Erros Inatos do Metabolismo Lipídico/diagnóstico por imagem , Atrofia/diagnóstico por imagem , Progressão da Doença , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Convulsões/diagnóstico por imagem
17.
Artigo em Inglês | MEDLINE | ID: mdl-28288856

RESUMO

Severe and prolonged stress is the main environmental factor that precipitates depression, anxiety and cognitive dysfunctions. On the other hand, exposure to environmental enrichment (EE) has been shown to induce progressive plasticity in the brain and improve learning and memory in various neurological and psychiatric disorders. It is not known whether exposure to enriched environment could ameliorate chronic immobilisation stress-induced cognitive deficits and altered molecular markers. Hence, in the present study we aimed to evaluate the effect of enriched environment on chronic immobilisation stress (CIS) associated changes in spatial learning and memory, behavioural measures of anxiety, depression and molecular markers as well as structural alterations. Male Wistar rats were subjected to chronic immobilisation stress for 2h/day/10days followed by 2weeks of exposure to EE. CIS resulted in weight loss, anhedonia, increased immobility, spatial learning and memory impairment, enhanced anxiety, and reduced expression of BDNF, VEGF, GFAP and glucocorticoid receptors (GR) in discrete brain regions. Interestingly, stressed rats exposed to enrichment ameliorated behavioural depression, spatial learning and memory impairment and reduced anxiety behaviour. In addition, EE restored BDNF, VEGF, GFAP and GR expression and normalized hypotrophy of dentate gyrus and hippocampus in CIS rats. In contrast, EE did not restore hypertrophy of the amygdalar complex. Thus, EE ameliorates stress-induced cognitive deficits by modulating the neurotrophic factors, astrocytes and glucocorticoid receptors in the hippocampus, frontal cortex and amygdala.


Assuntos
Ansiedade/terapia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Disfunção Cognitiva/terapia , Depressão/terapia , Meio Ambiente , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo , Transtornos da Memória/terapia , Receptores de Glucocorticoides/metabolismo , Aprendizagem Espacial/fisiologia , Estresse Psicológico/complicações , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Ansiedade/etiologia , Disfunção Cognitiva/etiologia , Depressão/etiologia , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Transtornos da Memória/etiologia , Ratos , Ratos Wistar , Restrição Física , Estresse Psicológico/etiologia
18.
Mitochondrion ; 32: 42-49, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27826120

RESUMO

Mitochondrial oxidative phosphorylation (OXPHOS) disorders account for a variety of neuromuscular disorders in children. In this study mitochondrial respiratory chain enzymes were assayed in muscle tissue in a large cohort of children with varied neuromuscular presentations from June 2011 to December 2013. The biochemical enzyme deficiencies were correlated with the phenotypes, magnetic resonance imaging, histopathology and genetic findings to reach a final diagnosis. There were 85 children (mean age: 6.9±4.7years, M:F:2:1) with respiratory chain enzyme deficiency which included: isolated complex I (n=50, 60%), multiple complexes (n=24, 27%), complex IV (n=8, 9%) and complex III deficiencies (n=3, 4%). The most common neurological findings were ataxia (59%), hypotonia (59%) and involuntary movements (49%). A known mitochondrial syndrome was diagnosed in 27 (29%) and non-syndromic presentations in 57 (71%). Genetic analysis included complete sequencing of mitochondrial genome, SURF1, POLG1&2. It revealed variations in mitochondrial DNA (n=8), SURF1 (n=5), and POLG1 (n=3). This study, the first of its kind from India, highlights the wide range of clinical and imaging phenotypes and genetic heterogeneity in children with mitochondrial oxidative phosphorylation disorders.


Assuntos
Doenças Metabólicas/genética , Doenças Metabólicas/patologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Doenças Neuromusculares/genética , Doenças Neuromusculares/patologia , Fosforilação Oxidativa , Adolescente , Criança , Pré-Escolar , Deficiência de Citocromo-c Oxidase , DNA Polimerase gama , DNA Polimerase Dirigida por DNA/genética , Complexo I de Transporte de Elétrons/deficiência , Complexo III da Cadeia de Transporte de Elétrons/deficiência , Complexo IV da Cadeia de Transporte de Elétrons , Feminino , Genoma Mitocondrial , Histocitoquímica , Humanos , Índia , Lactente , Imageamento por Ressonância Magnética , Masculino , Proteínas de Membrana/genética , Redes e Vias Metabólicas/genética , Proteínas Mitocondriais/genética , Músculos/patologia , Análise de Sequência de DNA
19.
Mech Ageing Dev ; 161(Pt A): 66-82, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27143313

RESUMO

Neurodegenerative phenomena are associated with mitochondrial dysfunction and this could be exacerbated by aging. Age-dependence of mitochondrial response to toxins could help understand these mechanisms and evolve novel therapeutics. 3-Nitropropionic acid (3-NPA) is a mitochondrial toxin that induces neurotoxicity in the striatum via inhibition of complex II. We investigated the age-related events that contribute to 3-NPA toxicity. 3-NPA induced neuronal death, oxidative stress and altered mitochondrial structure in neuronal cells. 3-NPA injection in vivo caused motor impairment, mitochondrial dysfunction and oxidative damage with different trend in young and adult mice. To understand the age-dependent mechanisms, we carried out proteomic analysis of the striatal protein extract from young mice (control: YC vs. 3-NPA treated: YT) and adult mice (control: AC vs. 3-NPA treated: AT). Among the 3752 identified proteins, 33 differentially expressed proteins (mitochondrial, synaptic and microsomal proteins) were unique either to YT or AT. Interestingly, comparison of the proteomic profile in AC and YC indicated that 161 proteins (linked with cytoskeletal structure, neuronal development, axogenesis, protein transport, cell adhesion and synaptic function) were down-regulated in AC compared to YC. We surmise that aging contributes to the cellular and molecular architecture in the mouse striatum with implications for neurodegeneration.


Assuntos
Envelhecimento/efeitos dos fármacos , Corpo Estriado/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Nitrocompostos/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Propionatos/efeitos adversos , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Corpo Estriado/patologia , Complexo II de Transporte de Elétrons , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Mitocôndrias/patologia , Proteínas Mitocondriais/biossíntese , Neurônios/patologia , Nitrocompostos/farmacologia , Propionatos/farmacologia , Ratos
20.
Cytotechnology ; 68(6): 2311-2321, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27757712

RESUMO

Human telomerase reverse transcriptase (hTERT) gene is a biomarker for the targeted therapy in various cancers. Presence of increased telomerase activity is a common feature of all cancers including glioblastoma. Both RNA and catalytic subunits of hTERT are the target sites for blocking its activity. The current study focuses on the expression of hTERT in glioblastoma and its regulation using two different novel siRNAs (small interfering RNA). Our patient data demonstrated increased expression of hTERT, which could be correlated with carcinogenesis in glioma. In vitro studies in siRNA transfected LN18 cells confirmed significant cell death (p < 0.05) as evidenced by MTT and trypan blue exclusion assay. These results were further supported by flow cytometry data, which showed significant increase in early and late apoptosis. The hTERT mRNA expression was effectively downregulated by 45 and 39 % with siRNA1 and siRNA2, respectively. These results were further confirmed by immunoblotting analysis (p < 0.05). Our results suggest that both the siRNAs effectively down regulated the expression of hTERT at mRNA and protein levels, thereby decreasing cell viability and proliferation rate. Hence siRNA mediated downregulation of hTERT could be a potential therapeutic avenue in glioblastoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...