Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; 868: 147372, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36933813

RESUMO

Orf147, a cytotoxic peptide, has been found to cause cytoplasmic male sterility (CMS) in Cajanus cajanifolius (pigeonpea). In our study, Orf147 was introduced into self-pollinating Cicer arietinum (chickpea) using Agrobacterium-mediated transformation for induction of CMS. The stable integration and expression of the transgene has been assessed through PCR and qRT-PCR analysis. In addition, phenotypic sterility analysis has been performed, considering developmental parameters like flower development, pod formation and flower drop. Transgene inheritance analysis demonstrates that out of the five PCR positive events in the T0 generation, two events have segregated according to the Mendelian segregation ratio (3:1) in the T2 generation. Further, pollen viability test using microscopic analysis confirms the induction of partial CMS in transgenic chickpea. The study holds significant value regarding the heterosis of self-pollinating legumes like chickpea. As a part of the prospect, exploring inducible promoters of species-specific or related legumes would be the next step to developing a two-line hybrid system.


Assuntos
Cajanus , Cicer , Fabaceae , Infertilidade , Cicer/genética , Expressão Ectópica do Gene , Cajanus/genética
2.
PLoS One ; 13(10): e0205668, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30321245

RESUMO

Finger millet (Eleusine coracana L.) is an annual herbaceous self-pollinating C4 cereal crop of the arid and semi-arid regions of the world. Finger millet is a food security crop proven to have resilience to changing climate and scores very high in nutrition. In the current study, we have assessed sixteen candidate reference genes for their appropriateness for the normalization studies in finger millet subjected to experimental regimes and treatments. Ten candidate reference genes (GAPDH, ß-TUB, CYP, EIF4α, TIP41, UBC, G6PD, S24, MACP and MDH) were cloned and six (ACT, ELF1α, PP2A, PT, S21 and TFIID) were mined from the NCBI database as well as from the literature. Expression stability ranking of the finger millet reference genes was validated using four different statistical tools i.e., geNorm, NormFinder, BestKeeper, ΔCt and RefFinder. From the study, we endorse MACP, CYP, EIF4α to be most stable candidate reference genes in all 'tissues', whereas PT, TFIID, MACP ranked high across genotypes, ß-TUB, CYP, ELF1α were found to be best under abiotic stresses and 'all samples set'. The study recommends using minimum of two reference genes for RT-qPCR data normalizations in finger millet. All in all, CYP, ß-TUB, and EF1α, in combination were found to be best for robust normalizations under most experimental conditions. The best and the least stable genes were validated for confirmation by assessing their appropriateness for normalization studies using EcNAC1 gene. The report provides the first comprehensive list of suitable stable candidate reference genes for nutritional rich cereal finger millet that will be advantageous to gene expression studies in this crop.


Assuntos
Eleusine/genética , Genes de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real/normas , Clonagem Molecular , RNA de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Padrões de Referência
3.
Front Plant Sci ; 7: 529, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27200008

RESUMO

Accurate and reliable gene expression data from qPCR depends on stable reference gene expression for potential gene functional analyses. In this study, 15 reference genes were selected and analyzed in various sample sets including abiotic stress treatments (salt, cold, water stress, heat, and abscisic acid) and tissues (leaves, roots, seedlings, panicle, and mature seeds). Statistical tools, including geNorm, NormFinder and RefFinder, were utilized to assess the suitability of reference genes based on their stability rankings for various sample groups. For abiotic stress, PP2A and CYP were identified as the most stable genes. In contrast, EIF4α was the most stable in the tissue sample set, followed by PP2A; PP2A was the most stable in all the sample set, followed by EIF4α. GAPDH, and UBC1 were the least stably expressed in the tissue and all the sample sets. These results also indicated that the use of two candidate reference genes would be sufficient for the optimization of normalization studies. To further verify the suitability of these genes for use as reference genes, SbHSF5 and SbHSF13 gene expression levels were normalized using the most and least stable sorghum reference genes in root and water stressed-leaf tissues of five sorghum varieties. This is the first systematic study of the selection of the most stable reference genes for qPCR-related assays in Sorghum bicolor that will potentially benefit future gene expression studies in sorghum and other closely related species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...