Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 14273, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32868860

RESUMO

The dispersion of organic N-benzyl-2-methyl-4-nitroaniline (BNA) in nematic liquid crystals (LCs) is studied. BNA doping decreases the threshold voltage of cell because of the reduced splay elastic constant and increased dielectric anisotropy of the LC mixture. When operated in the high voltage difference condition, the BNA-doped LC cell has a fall time that is five times faster than that of the pure one because of the decrements in the threshold voltage of the cell and rotational viscosity of the LC mixture. The additional restoring force induced by the BNA's spontaneous polarization electric field (SPEF) also assists to decrease the fall time of the LC cell. The decreased viscosity can be deduced from the decrements in phase transition temperature and associated order parameter of the LC mixture. Density functional theory calculation demonstrates that the BNA dopant strengthens the absorbance for blue light, enhances the molecular interaction energy and dipole moment, decreases the molecular energy gap, and thus increases the permittivity of the LC mixture. The calculation also shows that the increased dipole moment, polarizability, and polarizability anisotropy increase the dielectric anisotropy of the LC mixture, which agrees with the experimental results well. BNA doping has a promising application to the fields of LC devices and displays.

2.
Opt Express ; 28(7): 10572-10582, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32225639

RESUMO

In this study, a large-aperture hole-patterned liquid crystal (LHLC) lens was prepared from a mixture of nematic liquid crystal (NLC, E7) and organic material (N-benzyl-2-methyl-4-nitroaniline, BNA). The electro-optic properties of doped and undoped samples were measured, compared, and analyzed. The doped sample exhibited a response time that was ∼6 times faster than that of the undoped sample because BNA doping decreased the rotational viscosity of the NLC. BNA dopant effectively suppressed the RMS error of LHLC lens addressed at the high voltage. Furthermore, the BNA dopant revealed a considerable absorbance for short wavelengths (< 450 nm), automatically providing the LHLC lens with a blue light filtering function for ophthalmic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...