Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 252(Pt 2): 118816, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570126

RESUMO

The current investigation reports the usage of adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN), the two recognized machine learning techniques in modelling tetracycline (TC) adsorption onto Cynometra ramiflora fruit biomass derived activated carbon (AC). Many characterization methods utilized, confirmed the porous structure of synthesized AC. ANN and ANFIS models utilized pH, dose, initial TC concentration, mixing speed, time duration, and temperature as input parameters, whereas TC removal percentage was designated as the output parameter. The optimized configuration for the ANN model was determined as 6-8-1, while the ANFIS model employed trimf input and linear output membership functions. The obtained results showed a strong correlation, indicated by high R2 values (ANNR2: 0.9939 & ANFISR2: 0.9906) and low RMSE values (ANNRMSE: 0.0393 & ANFISRMSE: 0.0503). Apart from traditional isotherms, the dataset was fitted to statistical physics models wherein, the double-layer with a single energy satisfactorily explained the physisorption mechanism of TC adsorption. The sorption energy was 21.06 kJ/mol, and the number of TC moieties bound per site (n) was found to be 0.42, conclusive of parallel binding of TC molecules to the adsorbent surface. The adsorption capacity at saturation (Qsat) was estimated to be 466.86 mg/g - appreciably more than previously reported values. These findings collectively demonstrate that the AC derived from C. ramiflora fruit holds great potential for efficient removal of TC from a given system, and machine learning approaches can effectively model the adsorption processes.


Assuntos
Biomassa , Carvão Vegetal , Aprendizado de Máquina , Redes Neurais de Computação , Tetraciclina , Adsorção , Tetraciclina/química , Tetraciclina/análise , Carvão Vegetal/química , Frutas/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise
2.
Langmuir ; 35(13): 4718-4725, 2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30865458

RESUMO

Nonspherical self-propelling colloidal particles offer many possibilities for creating a variety of active motions. In this work, we report on the transition from linear to circular motion of active spherical-cap particles near a substrate. Self-propulsion is induced by self-diffusiophoresis by catalytic decomposition of hydrogen peroxide (H2O2) on one side of the particle. Asymmetric distribution of reaction products combined with the asymmetric shape of the particle gives rise to two types of motions depending upon the relative orientation of the particle with respect to the underlying substrate. At a low concentration of H2O2, linear active motion is observed, whereas increasing the H2O2 concentration leads to persistent circular motion. However, the speed of self-propulsion is nearly independent of the size of the particle. The study demonstrates the use of nonspherical particles to create linear and circular motion by varying the fuel concentration.

3.
Faraday Discuss ; 186: 353-70, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26765200

RESUMO

Synthesis of hybrids of a porous host-material (with well-dispersed embedded nanoparticles inside the pore), wherein each nanoparticle has precisely controlled properties (size and composition) poses a generic challenge. To this end, a new strategy is proposed to form SnxTi1-xO2 solid-solution-nanoparticles inside the pores of sphere-like mesoporous silica (SBA-15), with different percentages of Sn in the nanoparticle (varying from 5 to 50 at%), for enhanced photocatalysis. X-ray diffraction confirms the formation of solid-solution nanoparticles in the porous silica hybrid, while the location of nanoparticles and elemental composition are identified using electron microscopy. The hybrid with 5 at% of Sn (Sn0.05Ti0.95O2-sphere-like SBA-15) shows the maximum photocatalytic activity for degradation of rhodamine-B dye (first order rate constant for degradation, k = 1.86 h(-1)), compared to both pure TiO2-sphere-like SBA-15 (k = 1.38 h(-1)) or pure SnO2-sphere-like SBA-15 (k = 0.14 h(-1)) or other hybrids in this series. XPS and PL spectra suggest the formation of more oxygen vacancies during the replacement of Ti(4+) with Sn(4+). Electrochemical studies reveal that there is a reduction of charge transfer resistance from 910 kΩ cm(-2) for TiO2-sphere-like SBA-15, to 332 kΩ cm(-2) for Sn0.05Ti0.95O2-sphere-like SBA-15. These results imply that the enhancement in photocatalytic performance is as a result of delay in recombination of charge carriers. Therefore, the approach followed in the present work to form solid-solution nanoparticles inside a porous host without causing pore blockage, would be a promising route towards increasing reaction rates in catalytic applications of hybrid materials.

4.
Phys Chem Chem Phys ; 16(14): 6630-40, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24576943

RESUMO

To utilize the high specific capacity of SnO2 as an anode material in lithium-ion batteries, one has to overcome its poor cycling performance and rate capability, which result from large volume expansion (∼300%) of SnO2 during charging-discharging cycles. Hence, to accommodate the volume change during cycling, SnO2 nanoparticles of 6 nm diameter were synthesized specifically only on the outer surface of the mesopores, present within mesoporous carbon (CMK-5) particles, resulting in an effective buffering layer. To that end, the synthesis process first involves the formation of 3.5 nm SnO2 nanoparticles inside the mesopores of mesoporous silica (SBA-15), the latter being used as a template subsequently to obtain SnO2-CMK-5 hybrid particles. SnO2-CMK-5 exhibits superior rate capabilities, e.g. after 30 cycles, a specific discharge capacity of 598 mA h g(-1), at a current density of 178 mA g(-1). Electrochemical impedance spectroscopy reveals that the SnO2-CMK-5 electrode undergoes a significant reduction in solid-electrolyte interfacial and charge transfer resistances, with a simultaneous increase in the diffusion coefficient of lithium ions, all these in comparison to an electrode made of only SnO2 nanoparticles. This enhances the potential of using the SnO2-CMK-5 hybrid as a negative electrode, in terms of improved discharge capacity and cycling stability, compared to other electrodes, such as only SnO2 or only CMK-5.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...