Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Invest Ophthalmol Vis Sci ; 65(8): 22, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38995114

RESUMO

Purpose: To determine the relationship between visual sensitivities from white-on-white Goldmann size I to V stimuli and the underlying retinal ganglion cell (RGC) content in the non-human primate (NHP) experimental glaucoma model. Methods: Normative data were collected from 13 NHPs. Unilateral experimental glaucoma was induced in seven animals with the least variable fields who were monitored using optical coherence tomography and 30-2 full-threshold standard automated perimetry (SAP). At varying endpoints, animals were euthanized followed by perfusion fixation, and 1-mm retinal punches were obtained from 34 corresponding SAP locations. RGCs were immunolabeled with an antibody against an RNA-binding protein (RBPMS) marker and imaged using confocal microscopy. RGC counts from each location were then related to visual sensitivities for each stimulus size, after accounting for ocular magnification. Results: At the endpoint, the circumpapillary retinal nerve fiber layer thickness for experimental glaucoma eyes ranged from 47 to 113 µm. RGC density in control eyes was greatest for the 4.24° sample (18,024 ± 6869 cells/mm2) and decreased with eccentricity. Visual sensitivity at each tested location followed that predicted by spatial summation, with the critical area increasing with eccentricity (slope = 0.0036, R2 = 0.44). The relationship between RGC counts and visual sensitivity was described using a two-line fit, where the intercept of the first segment and hinge points were dependent on eccentricity. Conclusions: In NHPs, SAP visual thresholds are related to the underlying RGCs. The resulting spatial summation based structure-function model can be used to estimate RGC content from any standard white-on-white stimulus size.


Assuntos
Modelos Animais de Doenças , Glaucoma , Macaca mulatta , Células Ganglionares da Retina , Tomografia de Coerência Óptica , Testes de Campo Visual , Campos Visuais , Animais , Células Ganglionares da Retina/patologia , Glaucoma/fisiopatologia , Glaucoma/diagnóstico , Testes de Campo Visual/métodos , Tomografia de Coerência Óptica/métodos , Campos Visuais/fisiologia , Masculino , Fibras Nervosas/patologia , Pressão Intraocular/fisiologia , Feminino , Contagem de Células , Microscopia Confocal
2.
Transl Vis Sci Technol ; 11(8): 12, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35972432

RESUMO

Purpose: To determine the agreement and repeatability of inner retinal thickness measures from widefield imaging compared to standard scans in healthy nonhuman primates. Methods: Optical coherence tomography (OCT) scans were acquired from 30 healthy rhesus monkeys, with 11 animals scanned at multiple visits. The scan protocol included 20° × 20° raster scans centered on the macula and optic nerve head (ONH), a 12° diameter circular scan centered on the ONH, and a 55 × 45° widefield raster scan. Each scan was segmented using custom neural network-based algorithms. Bland-Altman analysis were used for comparing average circumpapillary retinal nerve fiber layer (RNFL) thickness and ganglion cell inner plexiform layer (GCIPL) thickness for a 16° diameter region. Comparisons were also made for similar 1° × 1° superpixels from the raster scans. Results: Average circumpapillary RNFL thickness from the circular scan was 114.2 ± 5.8 µm, and 113.2 ± 7.3 µm for an interpolated scan path from widefield imaging (bias = -1.03 µm, 95% limits of agreement [LOA] -8.6 to 6.5 µm). GCIPL thickness from standard raster scans was 72.7 ± 4.3 µm, and 73.7 ± 3.7 µm from widefield images (bias = 1.0 µm, 95% LOA -2.4 to 4.4 µm). Repeatability for both RNFL and GCIPL standard analysis was less than 5.2 µm. For 1° × 1° superpixels, the 95% limits of agreement were between -13.9 µm and 13.7 µm for RNFL thickness and -2.5 µm and 2.5 µm for GCIPL thickness. Conclusions: Inner retinal thickness measures from widefield imaging have good repeatability and are comparable to those measured using standard scans. Translational Relevance: Monitoring retinal ganglion cell loss in the non-human primate experimental glaucoma model could be enhanced using widefield imaging.


Assuntos
Macula Lutea , Disco Óptico , Animais , Fibras Nervosas , Células Ganglionares da Retina , Tomografia de Coerência Óptica/métodos
3.
Sci Rep ; 9(1): 8480, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186453

RESUMO

Gliomas are the most prevalent primary brain tumors with immense clinical heterogeneity, poor prognosis and survival. The nucleotide-binding domain, and leucine-rich repeat containing receptors (NLRs) and absent-in-melanoma 2 (AIM2) are innate immune receptors crucial for initiation and progression of several cancers. There is a dearth of reports linking NLRs and AIM2 to glioma pathology. NLRs are expressed by cells of innate immunity, including monocytes, macrophages, dendritic cells, endothelial cells, and neutrophils, as well as cells of the adaptive immune system. NLRs are critical regulators of major inflammation, cell death, immune and cancer-associated pathways. We used a data-driven approach to identify NLRs, AIM2 and NLR-associated gene expression and methylation patterns in low grade glioma and glioblastoma, using The Cancer Genome Atlas (TCGA) patient datasets. Since TCGA data is obtained from tumor tissue, comprising of multiple cell populations including glioma cells, endothelial cells and tumor-associated microglia/macrophages we have used multiple cell lines and human brain tissues to identify cell-specific effects. TCGA data mining showed significant differential NLR regulation and strong correlation with survival in different grades of glioma. We report differential expression and methylation of NLRs in glioma, followed by NLRP12 identification as a candidate prognostic marker for glioma progression. We found that Nlrp12 deficient microglia show increased colony formation while Nlrp12 deficient glioma cells show decreased cellular proliferation. Immunohistochemistry of human glioma tissue shows increased NLRP12 expression. Interestingly, microglia show reduced migration towards Nlrp12 deficient glioma cells.


Assuntos
Neoplasias Encefálicas/genética , Proteínas de Ligação a DNA/genética , Glioblastoma/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Encefálicas/patologia , Proliferação de Células , Ilhas de CpG/genética , Metilação de DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Glioblastoma/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Estimativa de Kaplan-Meier , Gradação de Tumores
4.
J Mater Chem B ; 5(19): 3511-3520, 2017 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32264287

RESUMO

M2 polarization of macrophages is predominant in case of tumors and some other infectious diseases for disease progression. Repolarization of the M2 phenotype to the M1 state may be required to cure diseases. Hence, it is of great interest to find out a material that would repolarize the M2 phenotype to the M1 state. Herein, the arabinogalactan protein from Andrographis paniculata (ApAGP) was used to prepare a silver nanoparticle-ApAGP (SNP-ApAGP) bioconjugate, which was characterized via UV-vis spectroscopy, zeta potential analysis, FT-IR spectroscopy, and HR-TEM. Studies suggest that SNP-ApAGP (2.5 µg mL-1) up-regulates ROS generation, NO generation, and pro-inflammatory cytokine release (IL-12, IFN-γ, TNF-α, and IL-6). SNP-ApAGP also down-regulates the arginase-1 activity and anti-inflammatory cytokine release (IL-4 & IL-10) in M0, M1, and M2-polarized peritoneal macrophages in vitro. Therefore, SNP-ApAGP induces M1 polarization in M0 macrophages, enhances the pro-inflammatory activity of the M1 phenotype, and can also repolarize M2 macrophages into the M1 phenotype. Therefore, SNP-ApAGP could be used for treating various infectious diseases and cancers where repolarization of M2 macrophages may be required to cure the disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...