Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 57(39): 5748-5758, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30102523

RESUMO

The pathways that G protein-coupled receptor (GPCR) ligands follow as they bind to or dissociate from their receptors are largely unknown. Protease-activated receptor-1 (PAR1) is a GPCR activated by intramolecular binding of a tethered agonist peptide that is exposed by thrombin cleavage. By contrast, the PAR1 antagonist vorapaxar is a lipophilic drug that binds in a pocket almost entirely occluded from the extracellular solvent. The binding and dissociation pathway of vorapaxar is unknown. Starting with the crystal structure of vorapaxar bound to PAR1, we performed temperature-accelerated molecular dynamics simulations of ligand dissociation. In the majority of simulations, vorapaxar exited the receptor laterally into the lipid bilayer through openings in the transmembrane helix (TM) bundle. Prior to full dissociation, vorapaxar paused in metastable intermediates stabilized by interactions with the receptor and lipid headgroups. Derivatives of vorapaxar with alkyl chains predicted to extend between TM6 and TM7 into the lipid bilayer inhibited PAR1 with apparent on rates similar to that of the parent compound in cell signaling assays. These data are consistent with vorapaxar binding to PAR1 via a pathway that passes between TM6 and TM7 from the lipid bilayer, in agreement with the most consistent pathway observed by molecular dynamics. While there is some evidence of entry of the ligand into rhodopsin and lipid-activated GPCRs from the cell membrane, our study provides the first such evidence for a peptide-activated GPCR and suggests that metastable intermediates along drug binding and dissociation pathways can be stabilized by specific interactions between lipids and the ligand.


Assuntos
Lactonas/metabolismo , Bicamadas Lipídicas/metabolismo , Piridinas/metabolismo , Receptor PAR-1/antagonistas & inibidores , Receptor PAR-1/metabolismo , Animais , Sítios de Ligação , Fibroblastos , Humanos , Lactonas/química , Ligantes , Simulação de Dinâmica Molecular , Estrutura Molecular , Fosfatidilcolinas/metabolismo , Ligação Proteica , Conformação Proteica , Piridinas/química , Ratos , Receptor PAR-1/química
2.
J Cell Biol ; 217(3): 1097-1112, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29301867

RESUMO

Mechanisms that sense and regulate epithelial morphogenesis, integrity, and homeostasis are incompletely understood. Protease-activated receptor 2 (Par2), the Par2-activating membrane-tethered protease matriptase, and its inhibitor, hepatocyte activator inhibitor 1 (Hai1), are coexpressed in most epithelia and may make up a local signaling system that regulates epithelial behavior. We explored the role of Par2b in matriptase-dependent skin abnormalities in Hai1a-deficient zebrafish embryos. We show an unexpected role for Par2b in regulation of epithelial apical cell extrusion, roles in regulating proliferation that were opposite in distinct but adjacent epithelial monolayers, and roles in regulating cell-cell junctions, mobility, survival, and expression of genes involved in tissue remodeling and inflammation. The epidermal growth factor receptor Erbb2 and matrix metalloproteinases, the latter induced by Par2b, may contribute to some matriptase- and Par2b-dependent phenotypes and be permissive for others. Our results suggest that local protease-activated receptor signaling can coordinate cell behaviors known to contribute to epithelial morphogenesis and homeostasis.


Assuntos
Proliferação de Células/fisiologia , Células Epiteliais/metabolismo , Serina Endopeptidases/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Células Epiteliais/citologia , Homeostase/fisiologia , Morfogênese/fisiologia , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Serina Endopeptidases/genética , Proteínas de Peixe-Zebra/genética
3.
Nature ; 492(7429): 387-92, 2012 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23222541

RESUMO

Protease-activated receptor 1 (PAR1) is the prototypical member of a family of G-protein-coupled receptors that mediate cellular responses to thrombin and related proteases. Thrombin irreversibly activates PAR1 by cleaving the amino-terminal exodomain of the receptor, which exposes a tethered peptide ligand that binds the heptahelical bundle of the receptor to affect G-protein activation. Here we report the 2.2 Å resolution crystal structure of human PAR1 bound to vorapaxar, a PAR1 antagonist. The structure reveals an unusual mode of drug binding that explains how a small molecule binds virtually irreversibly to inhibit receptor activation by the tethered ligand of PAR1. In contrast to deep, solvent-exposed binding pockets observed in other peptide-activated G-protein-coupled receptors, the vorapaxar-binding pocket is superficial but has little surface exposed to the aqueous solvent. Protease-activated receptors are important targets for drug development. The structure reported here will aid the development of improved PAR1 antagonists and the discovery of antagonists to other members of this receptor family.


Assuntos
Receptor PAR-1/química , Motivos de Aminoácidos , Sítios de Ligação , Cristalização , Cristalografia por Raios X , Ativação Enzimática/genética , Humanos , Hidrólise , Lactonas/química , Lactonas/farmacologia , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Infarto do Miocárdio/prevenção & controle , Conformação Proteica , Piridinas/química , Piridinas/farmacologia , Receptor PAR-1/agonistas , Receptor PAR-1/antagonistas & inibidores , Receptor PAR-1/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/classificação , Receptores de Trombina
4.
Dev Cell ; 18(1): 25-38, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-20152175

RESUMO

We report an unexpected role for protease signaling in neural tube closure and the formation of the central nervous system. Mouse embryos lacking protease-activated receptors 1 and 2 showed defective hindbrain and posterior neuropore closure and developed exencephaly and spina bifida, important human congenital anomalies. Par1 and Par2 were expressed in surface ectoderm, and Par2 was expressed selectively along the line of closure. Ablation of G(i/z) and Rac1 function in these Par2-expressing cells disrupted neural tube closure, further implicating G protein-coupled receptors and identifying a likely effector pathway. Cluster analysis of protease and Par2 expression patterns revealed a group of membrane-tethered proteases often coexpressed with Par2. Among these, matriptase activated Par2 with picomolar potency, and hepsin and prostasin activated matriptase. Together, our results suggest a role for protease-activated receptor signaling in neural tube closure and identify a local protease network that may trigger Par2 signaling and monitor and regulate epithelial integrity in this context.


Assuntos
Sistema Nervoso Central/embriologia , Sistema Nervoso Central/metabolismo , Desenvolvimento Embrionário/genética , Tubo Neural/embriologia , Tubo Neural/metabolismo , Receptor PAR-2/metabolismo , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Sistema Nervoso Central/citologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos , Camundongos , Camundongos Mutantes , Tubo Neural/citologia , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo , Defeitos do Tubo Neural/fisiopatologia , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Receptor PAR-2/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
5.
J Clin Invest ; 119(7): 1871-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19603543

RESUMO

Maintenance of vascular integrity is critical for homeostasis, and temporally and spatially regulated vascular leak is a central feature of inflammation. Sphingosine-1-phosphate (S1P) can regulate endothelial barrier function, but the sources of the S1P that provide this activity in vivo and its importance in modulating different inflammatory responses are unknown. We report here that mutant mice engineered to selectively lack S1P in plasma displayed increased vascular leak and impaired survival after anaphylaxis, administration of platelet-activating factor (PAF) or histamine, and exposure to related inflammatory challenges. Increased leak was associated with increased interendothelial cell gaps in venules and was reversed by transfusion with wild-type erythrocytes (which restored plasma S1P levels) and by acute treatment with an agonist for the S1P receptor 1 (S1pr1). S1pr1 agonist did not protect wild-type mice from PAF-induced leak, consistent with plasma S1P levels being sufficient for S1pr1 activation in wild-type mice. However, an agonist for another endothelial cell Gi-coupled receptor, Par2, did protect wild-type mice from PAF-induced vascular leak, and systemic treatment with pertussis toxin prevented rescue by Par2 agonist and sensitized wild-type mice to leak-inducing stimuli in a manner that resembled the loss of plasma S1P. Our results suggest that the blood communicates with blood vessels via plasma S1P to maintain vascular integrity and regulate vascular leak. This pathway prevents lethal responses to leak-inducing mediators in mouse models.


Assuntos
Permeabilidade Capilar , Inflamação/metabolismo , Lisofosfolipídeos/fisiologia , Esfingosina/análogos & derivados , Animais , Transfusão de Eritrócitos , Feminino , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/fisiologia , Lisofosfolipídeos/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oligopeptídeos/fisiologia , Fator de Ativação de Plaquetas/farmacologia , Receptores de Lisoesfingolipídeo/fisiologia , Esfingosina/sangue , Esfingosina/fisiologia
6.
J Biol Chem ; 280(13): 13122-8, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15665002

RESUMO

Activated protein C (APC), a natural anticoagulant protease, can trigger cellular responses via protease-activated receptor-1 (PAR1), a G protein-coupled receptor for thrombin. Whether this phenomenon contributes to the physiological effects of APC is unknown. Toward answering this question, we compared the kinetics of PAR1 cleavage on endothelial cells by APC versus thrombin. APC did cleave PAR1 on the endothelial surface, and antibodies to the endothelial protein C receptor inhibited such cleavage. Importantly, however, APC was approximately 10(4)-fold less potent than thrombin in this setting. APC and thrombin both triggered PAR1-mediated responses in endothelial cells including expression of antiapoptotic (tumor necrosis factor-alpha-induced a20 and iap-1) and chemokine (interleukin-8 (il-8) and cxcl3) genes, but again, APC was approximately 10(4)-fold less potent than thrombin. The addition of zymogen protein C to endothelial cultures did not alter the rate of PAR1 cleavage at low or high concentrations of thrombin, and PAR1 cleavage was substantial at thrombin concentrations too low to trigger detectable conversion of protein C to APC. Thus, locally generated APC did not contribute to PAR1 cleavage beyond that effected by thrombin in this system. Although consistent with reports that sufficiently high concentrations of APC can cleave and activate PAR1 in culture, our data suggest that a significant physiological role for PAR1 activation by APC is unlikely.


Assuntos
Proteína C/química , Receptor PAR-1/fisiologia , Trombina/química , Apoptose , Northern Blotting , Células Cultivadas , Quimiocina CXCL1 , Quimiocinas CXC/metabolismo , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Humanos , Hidrólise , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Interleucina-8/metabolismo , Cinética , Fosfatidilinositóis/química , Ligação Proteica , Proteína C/fisiologia , Estrutura Terciária de Proteína , Receptor PAR-1/metabolismo , Trombina/fisiologia , Fatores de Tempo , Veias Umbilicais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...