Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(18): 21994-22011, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37114882

RESUMO

The excess anthropogenic CO2 depletion via the catalytic approach to produce valuable chemicals is an industrially challenging, demanding, and encouraging strategy for CO2 fixation. Herein, we demonstrate a selective one-pot strategy for CO2 fixation into "oxazolidinone" by employing stable porous trimetallic oxide foam (PTOF) as a new catalyst. The PTOF catalyst was synthesized by a solution combustion method using transition metals Cu, Co, and Ni and systematically characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), N2 sorption, temperature-programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS) analysis. Due to the distinctive synthesis method and unique combination of metal oxides and their percentage, the PTOF catalyst displayed highly interconnected porous channels along with uniformly distributed active sites on its surface. Well ahead, the PTOF catalyst was screened for the fixation of CO2 into oxazolidinone. The screened and optimized reaction parameters revealed that the PTOF catalyst showed highly efficient and selective activity with 100% conversion of aniline along with 96% selectivity and yield toward the oxazolidinone product at mild and solvent-free reaction conditions. The superiority of the catalytic performance could be due to the presence of surface active sites and acid-base cooperative synergistic properties of the mixed metal oxides. A doubly synergistic plausible reaction mechanism was proposed for the oxazolidinone synthesis experimentally with the support of DFT calculations along with bond lengths, bond angles, and binding energies. In addition, stepwise intermediate formations with the free energy profile were also proposed. Also, the PTOF catalyst displayed good tolerance toward substituted aromatic amines and terminal epoxides for the fixation of CO2 into oxazolidinones. Very interestingly, the PTOF catalyst could be significantly reused for up to 15 consecutive cycles with stable activity and retention in physicochemical properties.

2.
Int J Biol Macromol ; 226: 690-705, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36513179

RESUMO

In this study, polyurethane (PU) and cellulose acetate (CA) electrospun fibers encapsulating rosemary essential oil (REO) and adsorbed silver (Ag) nanoparticles (NPs) were fabricated. The biologically inspired materials were analyzed for physicochemical characteristics using scanning electron microscopy, X-ray diffractometer, Fourier transform infrared, thermal gravimetric analysis, X-ray photoelectron spectroscopy, water contact angle, and water uptake studies. Results confirmed the presence of CA and Ag NPs on the PU micro-nanofibers increased the hydrophilicity from 107.1 ± 0.36o to 26.35 ± 1.06o. The water absorption potential increased from 0.07 ± 0.04 for pristine PU fibers to 12.43 ± 0.49 % for fibers with 7 wt% of CA, REO, and Ag NPs. The diffractometer confirmed the 2θ of 38.01°, 44.13o, and 64.33o, corresponding to the diffraction planes of Ag on the fibers. The X-ray photoelectron spectroscopy confirmed microfibers interfacial chemical interaction and surface changes due to CA, REO, and Ag presence. The inhibition tests on Staphylococcus aureus and Escherichia coli indicated that composites are antibacterial in activity. Moreover, synergistic interactions of REO and Ag NPs resulted in superior antibacterial activity. The cell viability and attachment assay showed improved hydrophilicity of the fibers, which resulted in better attachment of cells to the micro-nanofibers, similar to the natural extracellular matrix in the human body.


Assuntos
Nanopartículas Metálicas , Nanofibras , Óleos Voláteis , Rosmarinus , Humanos , Poliuretanos , Prata/química , Nanopartículas Metálicas/química , Nanofibras/química , Antibacterianos/farmacologia , Antibacterianos/química , Óleos Voláteis/farmacologia , Cicatrização
3.
RSC Adv ; 12(23): 14740-14756, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35702231

RESUMO

1,5-Benzodiazepine is considered as one of the central moieties in the core unit of most drug molecules. Construction of such moieties with a new C-N bond under solvent-free and mild reaction conditions is challenging. Herein, we present a benign protocol for one pot synthesis of 1,5-benzodiazepine derivatives by using ferrocene (FC) supported activated carbon (AC) as a heterogeneous catalyst. The catalyst FC/AC was characterized by several analytical and spectroscopic techniques to reveal its physicochemical properties and for structural confirmation. The synthesized catalyst FC/AC was explored for its catalytic activity in the synthesis of 1,5-benzodiazepines through condensation of o-phenylenediamine (OPDA) and ketones (aromatic and aliphatic) under solvent-free conditions. The robust 10 wt% FC/AC catalyst demonstrated appreciable activity with 99% conversion of diamines and 91% selectivity towards the synthesis of the desired benzodiazepine derivatives under solvent-free conditions at 90 °C in 8 h. Additionally, several reaction parameters such as catalyst loading, reaction temperature, effect of reaction time and effect of different solvents on selectivity were also studied and discussed in-depth. To understand the scope of the reaction, several symmetrical and unsymmetrical ketones along with different substituted diamines were tested with the synthesized catalyst. All prepared reaction products were obtained in good to efficient yields and were isolated and identified as 1,5-benzodiazepines and no side products were observed. The obtained catalyst characterization data and the activity studies suggested that, the synergetic effect occurred due to the uniform dispersion of ferrocene over the AC surface with numerous acidic sites which triggered the reaction of diamine and ketone to form the corresponding benzodiazepine derivative and the same was illustrated in the plausible mechanism. Furthermore, the synthesized catalyst was tested for leaching and recyclability, and the results confirmed that catalyst can be used for up to six consecutive cycles without much loss in the catalytic activity and its morphology which makes the process sustainable and economical for scale-up production. The present method offered several advantages such as an ecofriendly method, excellent yields, sustainable catalytic transformation, easy work-up and isolation of products, and quick recovery of catalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...