Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-36015117

RESUMO

Collagen loss in the skin dermis is a major cause of age-related changes to the skin. Natural phytochemical substances are desirable for the prevention of skin aging and the formation of wrinkles. Ipomoea pes-caprae (IPC) has been utilized for nutritional and therapeutic purposes, and its extract contains collagenase inhibitory activity while causing no cytotoxicity. The purpose of this study was to examine the impact of IPC extracts on cell proliferation and collagen production in human fibroblasts (CCD-986sk cells). IPC leaves were macerated in 70% and 95% ethanol and the chemical composition of the resulting extracts (IPC70 and IPC95) were determined using high performance liquid chromatography (HPLC). The bioactivity of IPC extracts was examined in CCD-986sk cells, including antioxidant capacity, inhibition of collagenase, effects on cell proliferation and collagen production, as well as wound healing using an in vitro scratch test. Changes in expression of collagen type I (COL1A1), tumor growth factor beta 1 (TGFB1), and beta-fibroblast growth factor (FGF2) genes were also evaluated. The antioxidant and collagenase inhibitory properties of IPC extracts were associated with 3,5-di-caffeoylquinic acid, chlorogenic acid, and ferulic acid. IPC extracts at noncytotoxic concentrations significantly increased cell proliferation, collagen production, and wound healing. These effects appear linked to the upregulation of COL1A1, TGFB1, and FGF2 genes. The bioactivity of the IPC70 extract was greater than that for IPC95. This is useful in cosmeceutical applications for human skin aging. Our findings indicate that IPC extracts have the potential for use in skin anti-aging cosmeceutical preparations.

2.
Vaccines (Basel) ; 9(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066016

RESUMO

Updated and revised versions of COVID-19 vaccines are vital due to genetic variations of the SARS-CoV-2 spike antigen. Furthermore, vaccines that are safe, cost-effective, and logistic-friendly are critically needed for global equity, especially for middle- to low-income countries. Recombinant protein-based subunit vaccines against SARS-CoV-2 have been reported using the receptor-binding domain (RBD) and the prefusion spike trimers (S-2P). Recently, a new version of prefusion spike trimers, named HexaPro, has been shown to possess two RBD in the "up" conformation, due to its physical property, as opposed to just one exposed RBD found in S-2P. Importantly, this HexaPro spike antigen is more stable than S-2P, raising its feasibility for global logistics and supply chain. Here, we report that the spike protein HexaPro offers a promising candidate for the SARS-CoV-2 vaccine. Mice immunized by the recombinant HexaPro adjuvanted with aluminum hydroxide using a prime-boost regimen produced high-titer neutralizing antibodies for up to 56 days after initial immunization against live SARS-CoV-2 infection. Also, the level of neutralization activity is comparable to that of convalescence sera. Our results indicate that the HexaPro subunit vaccine confers neutralization activity in sera collected from mice receiving the prime-boost regimen.

3.
Proteomes ; 7(1)2019 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-30813444

RESUMO

ß-thalassemia/Hb E is a global health issue, which is characterized by a range of clinical symptoms from a mild and asymptomatic anemia to severe disorders that require transfusions from infancy. Pathological mechanisms of the disease involve the excess of unmatched alpha globin and iron overload, leading to ineffective erythropoiesis and ultimately to the premature death of erythroid precursors in bone marrow (BM) and peripheral organs. However, it is unclear as to how BM microenvironment factors contribute to the defective erythropoiesis in ß-thalassemia/Hb E patients. Here, we employed mass spectrometry-based comparative proteomics to analyze BM plasma that was collected from six ß-thalassemia/Hb E patients and four healthy donors. We identified that the differentially expressed proteins are enriched in secretory or exosome-associated proteins, many of which have putative functions in the oxidative stress response. Using Western blot assay, we confirmed that atypical lipoprotein, Apolipoprotein D (APOD), belonging to the Lipocalin transporter superfamily, was significantly decreased in BM plasma of the tested pediatric ß-thalassemia/Hb E patients. Our results highlight that the disease condition of ineffective erythropoiesis and oxidative stress found in BM microenvironment of ß-thalassemia/Hb E patients is associated with the impaired expression of APOD protein.

4.
J Proteomics ; 194: 14-24, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30597312

RESUMO

Burkholderia pseudomallei is a Gram negative bacterium and the causative agent of melioidosis. Nonetheless, how virulence factors and pathogenic mechanisms are regulated have been elusive. In this study, we determined a role of polyphosphate kinase 1 (Ppk1) in regulation of quorum sensing (QS) and the sigma factor RpoS, and identified genes co-regulated by Ppk1, QS and RpoS. We find that Ppk1 positively controls autoinducer production and expression of rpoS transcript. Proteomic analysis identified 70 protein spots that are differentially expressed between B. pseudomallei wildtype and its ppk1-deficient strain. Within Ppk1regulated proteins, expression of 31 proteins are co-regulated by both RpoS and QS, whose functions of the majority of these proteins are associated with energy production and stress response. Moreover, expression of proteins involved in type III secretion system (T3SS) is also controlled by Ppk1. Quantitative PCR analysis confirmed that the T3SS genes bipB, bsaR and hrpK are down-regulated in ppk1 mutant. In addition, the ppk1-deficient strain exhibits defects in adhesion and invasion into human lung epithelial cells. Our work therefore reveals regulation of virulence factors and a regulatory mechanism of RpoS and QS by Ppk1, which altogether participate in gene expression control, and might be crucial for pathogenicity of B. pseudomallei. SIGNIFICANCE: Polyphosphate kinase1 (Ppk1), which is a key enzyme in polyphosphate biosynthesis, is pivotal for virulence of the melioidosis pathogen B. pseudomallei. This enzyme is not present in human. Therefore, it has been proposed to be a key target for anti-bacterial drugs. An important step toward development of novel antibiotics and therapeutic strategies is an analysis of proteins that are controlled by Ppk1. By using proteomics, we find that Ppk1 co-regulates virulence-associated genes together with quorum sensing (QS) and the sigma factor RpoS. Moreover, we reveal that Ppk1 is critical for bacterial adhesion and host cell invasion, supporting the finding from our proteome analysis.


Assuntos
Proteínas de Bactérias , Burkholderia pseudomallei , Regulação Bacteriana da Expressão Gênica , Fosfotransferases (Aceptor do Grupo Fosfato) , Percepção de Quorum , Fator sigma , Sistemas de Secreção Tipo III , Células A549 , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/metabolismo , Burkholderia pseudomallei/patogenicidade , Humanos , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Fator sigma/genética , Fator sigma/metabolismo , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo
5.
PLoS One ; 10(12): e0144128, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26656930

RESUMO

Whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (whole-cell MALDI-TOF MS) has been widely adopted as a useful technology in the identification and typing of microorganisms. This study employed the whole-cell MALDI-TOF MS to identify and differentiate wild-type and mutants containing constructed single gene mutations of Burkholderia pseudomallei, a pathogenic bacterium causing melioidosis disease in both humans and animals. Candidate biomarkers for the B. pseudomallei mutants, including rpoS, ppk, and bpsI isolates, were determined. Taxon-specific and clinical isolate-specific biomarkers of B. pseudomallei were consistently found and conserved across all average mass spectra. Cluster analysis of MALDI spectra of all isolates exhibited separate distribution. A total of twelve potential mass peaks discriminating between wild-type and mutant isolates were identified using ClinProTools analysis. Two peaks (m/z 2721 and 2748 Da) were specific for the rpoS isolate, three (m/z 3150, 3378, and 7994 Da) for ppk, and seven (m/z 3420, 3520, 3587, 3688, 4623, 4708, and 5450 Da) for bpsI. Our findings demonstrated that the rapid, accurate, and reproducible mass profiling technology could have new implications in laboratory-based rapid differentiation of extensive libraries of genetically altered bacteria.


Assuntos
Burkholderia pseudomallei , Marcadores Genéticos/genética , Mutação/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Burkholderia pseudomallei/classificação , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/isolamento & purificação , Genótipo , Humanos , Melioidose/microbiologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Recombinantes/genética , Fator sigma/genética
6.
PLoS One ; 9(6): e99160, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24914956

RESUMO

Burkholderia pseudomallei is the causative agent of melioidosis, which is an endemic disease in Northeast Thailand and Northern Australia. Environmental reservoirs, including wet soils and muddy water, serve as the major sources for contributing bacterial infection to both humans and animals. The whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (whole-cell MALDI-TOF MS) has recently been applied as a rapid, accurate, and high-throughput tool for clinical diagnosis and microbiological research. In this present study, we employed a whole-cell MALDI-TOF MS approach for assessing its potency in clustering a total of 11 different B. pseudomallei isolates (consisting of 5 environmental and 6 clinical isolates) with respect to their origins and to further investigate the source-identifying biomarker ions belonging to each bacterial group. The cluster analysis demonstrated that six out of eleven isolates were grouped correctly to their sources. Our results revealed a total of ten source-identifying biomarker ions, which exhibited statistically significant differences in peak intensity between average environmental and clinical mass spectra using ClinProTools software. Six out of ten mass ions were assigned as environmental-identifying biomarker ions (EIBIs), including, m/z 4,056, 4,214, 5,814, 7,545, 7,895, and 8,112, whereas the remaining four mass ions were defined as clinical-identifying biomarker ions (CIBIs) consisting of m/z 3,658, 6,322, 7,035, and 7,984. Hence, our findings represented, for the first time, the source-specific biomarkers of environmental and clinical B. pseudomallei.


Assuntos
Biomarcadores/análise , Burkholderia pseudomallei/isolamento & purificação , Microbiologia Ambiental , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Análise por Conglomerados , Íons , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...