Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Med ; 45(4): 285-90, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25316658

RESUMO

Serological assays for the RhD blood group are based on detection of the RhD antigen on human red blood cells using a specific anti-D antibody. The weak expression of the RhD antigen in the DEL variant hinders the sensitivity of conventional serological assays. Evidence of anti-D immunization in patients with D-negativity who have received DEL-variant blood units has been reported in various populations. This observation has prompted the need for genetic epidemiological and clinical data on the DEL variant in the development of DEL molecular diagnostic testing. This review highlights the molecular features of the DEL variant, the clinical consequences of DEL-blood transfusion, and current approaches for detection of the DEL-variant for donor screening and transfusion.


Assuntos
Variação Genética , Sistema do Grupo Sanguíneo Rh-Hr/genética , Alelos , Etnicidade/genética , Humanos
2.
EXCLI J ; 13: 287-99, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26417261

RESUMO

Plasmodium falciparum infection can abruptly progress to severe malaria and cerebral malaria. Despite the current efficiency of antimalarial drugs in killing parasites, no specific effective treatment has been found for cerebral malaria. Thus, a new strategy targeting both parasite elimination and endothelial cell protection is urgently needed in this field. In this study, we determined whether curcumin, which has blood-brain permeability, antioxidative activity and/or immunomodulation property, provided a potential effect on both parasite elimination and endothelial protection. Murine brain microvascular endothelial cells (bEnd.3; ATCC) were cocultured with Plasmodium falciparum-infected red blood cells (Pf-IRBC), peripheral blood mononuclear cell (PBMC) and platelets. Apoptosis of endothelial cells was demonstrated by annexin V staining. Interestingly, curcumin exhibited high efficiency of antimalarial activity (IC50 ~10 µM) and decreased bEnd.3 apoptosis down to 60.0 % and 79.6 % upon pre-treatment and co-treatment, respectively, with Pf-IRBC, platelets and PBMC. Our findings open up a high feasibility of applying curcumin as a potential adjunctive compound for cerebral malaria treatment in the future.

3.
EXCLI J ; 13: 401-15, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26417267

RESUMO

A simple, inexpensive and field applicable metal determination system would be a powerful tool for the efficient control of metal ion contamination in various sources e.g. drinking-water, water reservoir and waste discharges. In this study, we developed a cell-based metal sensor for specific and real-time detection of copper ions. E. coli expressing metal-sensing green fluorescent protein (designated as TG1/(CG)6GFP and TG1/H6CdBP4GFP) were constructed and served as a metal analytical system. Copper ions were found to exert a fluorescence quenching effect, while zinc and cadmium ions caused minor fluorescence enhancement in the engineered bacterial suspension. To construct a user-friendly and reagentless metal detection system, TG1/H6CdBP4GFP and TG1/(CG)6GFP were encapsulated in polyacrylamide hydrogels that were subsequently immobilized on an optical fiber equipped with a fluorescence detection module. The sensor could be applied to measure metal ions by simply dipping the encapsulated bacteria into a metal solution and monitoring fluorescence changes in real time as a function of the metal concentration in solution. The sensor system demonstrated high specificity toward copper ions. The fluorescence intensities of the encapsulated TG1/(CG)6GFP and TG1/H6CdBP4GFP were quenched by approximately 70 % and 80 % by a high-dose of copper ions (50 mM), respectively. The level of fluorescence quenching exhibited a direct correlation with the copper concentration, with a linear correlation coefficient (r) of 0.99. The cell-based metal sensor was able to efficiently monitor copper concentrations ranging between 5 M and 50 mM, encompassing the maximum allowed copper contamination in drinking water (31.15 M) established by the WHO. Furthermore, the cell-based metal sensor could undergo prolonged storage for at least 2 weeks without significantly influencing the copper sensitivity.

4.
Artigo em Inglês | MEDLINE | ID: mdl-15115082

RESUMO

Many lines of evidence reveal that artemisinin, an antimalarial containing endoperoxide, generates free radicals to kill malaria parasites. The present study re-evaluated the antioxidants of P. falciparum-infected erythrocytes in the absence and presence of 0.25, 0.5 and 1.0 ng/ml of dihydroartemisinin (DHA), the active metabolite of artemisinin. The ratio of reduced to oxidized glutathione (GSH/GSSG) and activities of superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) were determined. The data indicated that malaria infection induced oxidative stress in erythrocytes that resulted in a significant lower GSH in parasitized cells compared to the non-parasitized. DHA showed no effect on the antioxidant levels of non-parasitized erythrocytes treated under similar conditions as P. falciparum-infected erythrocytes. However, significantly lower GSH as well as catalase and GPx activities in parasitized cells were seen at drug concentrations of 0.5 and 1.0 ng/ml (p < 0.05). GSH is the most sensitive indicator of oxidative stress in malaria-infected erythrocytes both in the absence and in the presence of DHA. Parasite GPx might play a more important role than catalase in the elimination of peroxide. Parasite viabilities in the presence of DHA were analyzed simultaneously and were affected to a greater extent than the antioxidant levels. The present observation showed that although DHA killed malaria parasites by generating free radicals from the endoperoxide bridge causing the reduction of antioxidants, but the depletion of parasite antioxidants is not a prerequisite for the parasite death.


Assuntos
Antimaláricos/farmacologia , Antioxidantes/metabolismo , Artemisininas/farmacologia , Eritrócitos/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Sesquiterpenos/farmacologia , Animais , Glutationa Peroxidase/metabolismo , Humanos , Técnicas In Vitro , Estresse Oxidativo/efeitos dos fármacos , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...