Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 12: 1361943, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38752196

RESUMO

Hematopoiesis continues throughout life to produce all types of blood cells from hematopoietic stem cells (HSCs). Metabolic state is a known regulator of HSC self-renewal and differentiation, but whether and how metabolic sensor O-GlcNAcylation, which can be modulated via an inhibition of its cycling enzymes O-GlcNAcase (OGA) and O-GlcNAc transferase (OGT), contributes to hematopoiesis remains largely unknown. Herein, isogenic, single-cell clones of OGA-depleted (OGAi) and OGT-depleted (OGTi) human induced pluripotent stem cells (hiPSCs) were successfully generated from the master hiPSC line MUSIi012-A, which were reprogrammed from CD34+ hematopoietic stem/progenitor cells (HSPCs) containing epigenetic memory. The established OGAi and OGTi hiPSCs exhibiting an increase or decrease in cellular O-GlcNAcylation concomitant with their loss of OGA and OGT, respectively, appeared normal in phenotype and karyotype, and retained pluripotency, although they may favor differentiation toward certain germ lineages. Upon hematopoietic differentiation through mesoderm induction and endothelial-to-hematopoietic transition, we found that OGA inhibition accelerates hiPSC commitment toward HSPCs and that disruption of O-GlcNAc homeostasis affects their commitment toward erythroid lineage. The differentiated HSPCs from all groups were capable of giving rise to all hematopoietic progenitors, thus confirming their functional characteristics. Altogether, the established single-cell clones of OGTi and OGAi hiPSCs represent a valuable platform for further dissecting the roles of O-GlcNAcylation in blood cell development at various stages and lineages of blood cells. The incomplete knockout of OGA and OGT in these hiPSCs makes them susceptible to additional manipulation, i.e., by small molecules, allowing the molecular dynamics studies of O-GlcNAcylation.

2.
Stem Cell Res Ther ; 14(1): 279, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37775798

RESUMO

BACKGROUND: In vitro production of hematopoietic stem/progenitor cells (HSPCs) from human-induced pluripotent stem cells (hiPSCs) provides opportunities for fundamental research, disease modeling, and large-scale production of HLA-matched HSPCs for therapeutic applications. However, a comprehensive understanding of the signaling mechanisms that regulate human hematopoiesis is needed to develop a more effective procedure for deriving HSPCs from hiPSCs. METHODS: In this study, we investigate the role of YAP during the hematopoietic differentiation of hiPSCs to HSPCs and erythrocytes using the isogenic YAP-overexpressing (YAP-S5A) and YAP-depleting (YAP-KD) hiPSCs to eliminate the effects of a genetic background variation. RESULTS: Although YAP is dispensable for maintaining the self-renewal and pluripotency of these hiPSCs, it affects the early cell-fate determination and hematopoietic differentiation of hiPSCs. Depleting YAP enhances the derivation efficiency of HSPCs from hiPSCs by inducing the mesodermal lineage commitment, promoting hematopoietic differentiation, and preventing the differentiation toward endothelial lineage. On the contrary, the overexpression of YAP reduced HSPCs yield by inducing the endodermal lineage commitment, suppressing hematopoietic differentiation, and promoting the differentiation toward endothelial lineage. CONCLUSIONS: Expression of YAP is crucial for the differentiation of hiPSC-derived HSPCs toward mature erythrocytes. We believe that by manipulating YAP activity using small molecules, the efficiency of the large-scale in vitro production system for generating hematopoietic stem/progenitor cells for future therapeutic use could be improved.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Linhagem da Célula/genética , Diferenciação Celular/genética , Células-Tronco Hematopoéticas/metabolismo , Hematopoese
3.
Stem Cell Res ; 67: 103035, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36753833

RESUMO

Runt-Related Transcription Factor 1c (RUNX1c) plays an important role in regulating the development of hematopoietic stem cells (HSC). Using CRISPR/Cas9 gene editing technology, we established a RUNX1c-eGFP reporter cell line from the MUSIi012-A cell line. The MUSIi012-A-4 cell line has normal stem cell morphology and karyotype, expresses pluripotency markers, and can be differentiated into all three germ layers in vitro and in vivo. This cell line serves as a valuable model to observe the expression of RUNX1c via eGFP tracking during human hematopoietic development.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular , Edição de Genes , Diferenciação Celular
4.
Stem Cell Res ; 66: 102990, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36528979

RESUMO

Yes-associated protein (YAP), an important effector protein of the Hippo signaling pathway, acts as a molecular switch in controlling cell proliferation and apoptosis. In this study, a YAP-targeted isogenic sub-clone of the MUSIe002-A was generated, designated as MUSIe002-A-1. The MUSIe002-1 cell line had normal pluripotent stem cell characteristics and karyotype. Its ability to differentiate into three germ layers was confirmed. As reduction of YAP does not disturb the pluripotency of hESCs, this cell line serves as a valuable model to extrapolate the functional role of YAP in stem cell biology and its applications.


Assuntos
Células-Tronco Embrionárias Humanas , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco Embrionárias Humanas/metabolismo , Sistemas CRISPR-Cas/genética , Proteínas de Sinalização YAP , Linhagem Celular
5.
Stem Cell Res ; 59: 102660, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35033856

RESUMO

The MUSIe002-A cell line was established from in vitro fertilization of human sperm and oocytes donated for research with informed consent. This cell line exhibited normal human embryonic stem cell (hESC) characteristics, including typical cell morphology, expression of all pluripotent stem cell markers, and potential to differentiate into three germ layers. A karyotyping analysis revealed 46 XY chromosome and cells that did not have mycoplasma contamination. MUSIe002-A represents a valuable unlimited cell source and is of potential interest for human in vitro stem cell based-models, genetic modifications, and stem cell-based therapy of human disease.

6.
Stem Cell Res ; 48: 101950, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32791482

RESUMO

In mammals, there are a number of kinases, including serine/threonine-protein kinase LATS1, that act as a core kinase of the Hippo pathway and that negatively regulate the Hippo effector protein YAP and its paralog TAZ. Using CRISPR/Cas9 technology, we established a stable LATS1 knockdown (LATS1-KD) iPSC from the MUSIi012-A cell line. The LATS1-KD iPSC MUSIi012-A-3 that was developed maintained both the normal karyotype and the pluripotent phenotype, and retained the ability to differentiate into all three embryonic germ layers.


Assuntos
Edição de Genes , Transdução de Sinais , Fatores de Transcrição , Animais , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Serina , Treonina , Fatores de Transcrição/metabolismo
7.
Stem Cell Res ; 43: 101723, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32018207

RESUMO

Yes-associated protein (YAP) is an important transcriptional coactivator in the Hippo signaling pathway. Using CRISPR/Cas9 technology, we established a stable YAP-knockdown (YAP-KD) induced pluripotent stem cell (iPSC) from the MUSIi012-A cell line. The YAP-KD iPSC MUSIi012-A-2 maintained the pluripotent phenotype, the ability to differentiate into all three embryonic germ layers, and it maintained the normal karyotype.


Assuntos
Proteínas de Ciclo Celular/genética , Edição de Genes/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição/genética , Animais , Diferenciação Celular , Feminino , Humanos
8.
Stem Cell Res ; 43: 101695, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31945613

RESUMO

MUSIe001-A cell line was derived from a Southeast Asian (SEA) type deletion α0-thalassemia embryo. The SEA deletion embryo was donated for research with informed consent. This cell line shows normal hESC morphology, expresses all pluripotent markers, and has the potential to differentiate into all three germ layers in vitro and in vivo. The MUSIe001-A line has normal karyotype and is free from mycoplasma contamination. PCR analysis confirmed the MUSIe001-A cell line to be a SEA type deletion. MUSIe001-A is a valuable proof of principle model for gene therapy that will facilitate the development of new treatments for affected foetuses.


Assuntos
Células-Tronco Embrionárias Humanas/metabolismo , Talassemia alfa/genética , Animais , Linhagem Celular , Deleção de Genes , Células-Tronco Embrionárias Humanas/citologia , Humanos , Camundongos , Camundongos Nus
9.
J Biophotonics ; 13(3): e201960012, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31595681

RESUMO

ATP-analogue inhibitors, Gefitinib (Iressa) and Erlotinib (Tarceva) had been approved for advanced and metastatic nonsmall cell lung cancer (NSCLC) cells against tyrosine kinase domain of epidermal growth factor receptor (EGFR). Many techniques have been developed to better understand the drug mechanism which is multistep, time-consuming and expensive. Herein, we performed Fourier-transform infrared (FTIR) microscopy for evaluating the biochemical change on NSCLC (A549) cells after treatment. At levels that produced equivalent effects, Gefitinib dramatically induced cell apoptosis via impaired mitochondrial transmembrane potential. Whereas, Erlotinib had a slight effect on A549. Principal component analysis was performed to distinguish the effect of EGFR inhibitors on A549. FTIR spectra regions were divided into three regions: lipids (3000-2800 cm-1 ), proteins (1700-1500 cm-1 ) and carbohydrates and nuclei acids (1200-1000 cm-1 ). Biochemical changes can be evaluated by these spectral regions. This work may be a novel concept for utilizing FTIR spectroscopy for high-throughput discriminative effects of a drug or compound and its derivatives on cells.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Células A549 , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Stem Cell Res ; 41: 101597, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31669974

RESUMO

CD34+ cells were isolated from mobilized peripheral blood of a healthy donor and reprogrammed by nucleofection with episomal plasmids carrying l-MYC, LIN28, OCT4, SOX2, KLF4, EBNA-1, and shRNA against p53. The obtained MUSIi012-A cell line maintained the pluripotent phenotype, the ability to differentiate into all three germ layers, and a normal karyotype.


Assuntos
Diferenciação Celular , Reprogramação Celular , Células-Tronco de Sangue Periférico/citologia , Teratoma/patologia , Células Cultivadas , Feminino , Humanos , Fator 4 Semelhante a Kruppel , Plasmídeos
11.
J Cell Biochem ; 120(10): 18077-18087, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31172597

RESUMO

Most patients suffering from non-small cell lung cancer (NSCLC) have epidermal growth factor receptor (EGFR) overexpression. Currently, EGFR tyrosine kinase inhibitors (TKIs) that act as the ATP-analogs and monoclonal antibodies (MAbs) to EGFR-ectodomain that block intracellular signaling are used for the treatment of advanced NSCLC. Unfortunately, adverse effects due to the TKI off-target and drug resistance occur in a significant number of the treated patients while some NSCLC genotypes do not respond to the therapeutic MAbs. Thus, a more effective remedy for the treatment of EGFR-overexpressed cancers is deemed necessary. In this study, VH/VH H displayed-phage clones that are bound to recombinant EGFR-TK were fished-out from a humanized-camel VH/VH H phage display library. VH/VH H of three phage-infected Escherichia coli clones (VH18, VH H35, and VH36) were linked molecularly to nonaarginine (R9) for making them cell penetrable. R9-VH18, R9-VH H35, and R9-VH36 were cytotoxic to human adenocarcinomic alveolar basal epithelial cells (A549) at the fifty percent inhibitory concentration (IC50 ) 0.181 ± 0.132, 0.00961 ± 0.00516, and 0.00996 ± 0.00752 µM, respectively, which were approximately 1000-fold more effective than small molecular TKIs. R9-VH18 and R9-VH36 also delayed cancer cell migration in a scratch-wound assay. Computerized homology modeling and intermolecular docking revealed that VH18 and VH H35 used CDR3 to interact with EGFR-TK residues close to the catalytic site, which might sterically hinder the ATP-binding of the TK; VH36 used CDR2 to bind at the asymmetric dimerization surface, which might disrupt EGFR dimerization leading to inhibition of intracellular signaling. The humanized-cell penetrable nanobodies have a high potential for developing further towards a clinical application.


Assuntos
Adenocarcinoma de Pulmão/patologia , Movimento Celular , Receptores ErbB/antagonistas & inibidores , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/farmacologia , Anticorpos de Domínio Único/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Mapeamento de Epitopos , Receptores ErbB/metabolismo , Humanos , Simulação de Acoplamento Molecular
12.
Stem Cell Res Ther ; 9(1): 138, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29751777

RESUMO

BACKGROUND: Due to their extensive self-renewal and multilineage differentiation capacity, human embryonic stem cells (hESCs) have great potential for studying developmental biology, disease modeling, and developing cell replacement therapy. The first hESC line was generated in 1998 by culturing inner cell mass (ICM) cells isolated from human blastocysts using an immunosurgery technique. Since then, many techniques including mechanical ICM isolation, laser dissection, and whole embryo culture have been used to derive hESC lines. However, the hESC derivation efficiency remains low, usually less than 50%, and it requires a large number of human embryos to derive a significant number of hESC lines. Due to a shortage of and restricted access to human embryos, a novel approach with better hESC derivation efficiency is badly needed to decrease the number of embryos used. METHODS: We hypothesized that the low hESC derivation efficiency might be due to extensive proliferation of trophoblast (TE) cells which could interfere with ICM proliferation. We therefore developed a methodology to minimize TE cell proliferation by culturing ICM in a feeder-free system for 3 days before transferring them onto feeder cells. RESULTS: This minimized trophoblast cell proliferation (MTP) technique could be successfully used to derive hESCs from normal, abnormal, and frozen-thawed embryos with better derivation efficiency of more than 50% (range 50-100%; median 70%). CONCLUSIONS: We successfully developed a better hESC derivation methodology using the "MTP" culture system. This methodology can be effectively used to derive hESCs from both normal and abnormal embryos under feeder-free conditions with higher efficiency when compared with other methodologies. With this methodology, large-scale production of clinical-grade hESCs is feasible.


Assuntos
Técnicas de Cultura Embrionária/métodos , Células-Tronco Embrionárias Humanas/metabolismo , Trofoblastos/metabolismo , Proliferação de Células , Células-Tronco Embrionárias Humanas/citologia , Humanos
13.
Eur J Med Chem ; 124: 896-905, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27668758

RESUMO

A series of 2,4 diamino-pyrimidines have been identified from an analysis of open access high throughput anti-malarial screening data reported by GlaxoSmithKline at the 3D7 and resistant Dd2 strains. SAR expansion has been performed using structural knowledge of the most plausible parasite target. Seventeen new analogs have been synthesized and tested against the resistant K1 strain of Plasmodium falciparum (Pf). The cytotoxicity of the compounds was assessed in Vero and A549 cells and their selectivity towards human kinases including JAK2 and EGFR were undertaken. We identified compound 5n and 5m as sub-micromolar inhibitors, with equivalent anti-malarial activity to Chloroquine (CQ). Compounds 5d and 5k, µM inhibitors of Pf, displayed improved cytotoxicity with weak inhibition of the human kinases.


Assuntos
Antimaláricos/farmacologia , Antimaláricos/toxicidade , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/toxicidade , Pirimidinas/farmacologia , Pirimidinas/toxicidade , Animais , Antimaláricos/química , Antimaláricos/metabolismo , Linhagem Celular Tumoral , Chlorocebus aethiops , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Plasmodium falciparum/efeitos dos fármacos , Conformação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Pirimidinas/química , Pirimidinas/metabolismo , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...