Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37443573

RESUMO

This study aimed to investigate whether the morphology of the temporomandibular joint (TMJ) is associated with chewing patterns while considering skeletal morphology, sex, age, and symptoms of temporomandibular disorder (TMD). A cross-sectional observational study of 102 TMJs of 80 patients (age 16-40 years) was performed using pretreatment records of cone-beam computed tomography imaging of the TMJ, mandibular kinesiographic records of gum chewing, lateral and posteroanterior cephalometric radiographs, patient history, and pretreatment questionnaires. To select appropriate TMJ measurements, linear regression analyses were performed using TMJ measurements as dependent variables and chewing patterns as the independent variable with adjustment for other covariates, including Nasion-B plane (SNB) angle, Frankfort-mandibular plane angle (FMA), amount of lateral mandibular shift, sex, age, and symptoms of TMD. In multiple linear regression models adjusted for other covariates, the length of the horizontal short axis of the condyle and radius of the condyle at 135° from the medial pole were significantly (p < 0.05) associated with the chewing patterns in the frontal plane on the working side. "Non-bilateral grinding" displayed a more rounded shape of the mandibular condyle. Conversely, "bilateral grinding" exhibited a flatter shape in the anteroposterior aspect. These findings suggest that the mandibular condyle morphology might be related to skeletal and masticatory function, including chewing patterns.

2.
Clin Exp Dent Res ; 7(2): 219-225, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33205570

RESUMO

OBJECTIVE: The lateral pterygoid is vital in coordinating multidimensional jaw movements. Since a vector in three-dimensional (3D) space is defined by two 3D points, the role of the lateral pterygoid in 3D jaw movements is defined by its origin and insertion. Reportedly, the lateral pterygoid is inserted into not only the pterygoid fovea but also into the medial surface of the condylar process. The objective was to investigate the morphological features of the region of the lateral pterygoid that inserted into the medial surface of the condylar process. MATERIAL AND METHODS: Ten head halves of seven cadaveric donors were analyzed. In all specimens, the insertion area on the medial surface of the condylar process was measured based on microcomputed tomography images. Muscle fibers were separated into ≥50 small bundles, and positional relationships between the origins and insertions were investigated. RESULTS: Overall, 28.8 ± 5.0% of the insertion area of the lateral pterygoid was situated on the medial surface of the condylar process. Moreover, muscle fiber arrangement revealed that origins of the muscle bundles inserting into the medial surface in seven specimens posteriorly occupied the lateral plate of the pterygoid process longitudinally, whereas those in three specimens mainly occupied the posteroinferior portion. CONCLUSIONS: Muscle bundle inserting on the medial surface of the condylar process had a broad insertion area and a distinct origin on the posterior region of the lateral plate of the pterygoid process. This muscle bundle could act as one of the significant subunits within the lateral pterygoid. Therefore, anatomical coordination mechanisms underlying jaw movement cannot be elucidated without considering this subunit.


Assuntos
Côndilo Mandibular , Músculos Pterigoides , Humanos , Côndilo Mandibular/diagnóstico por imagem , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...