Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 16366, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180451

RESUMO

In this study, the effect of irradiation temperature on microstructural evolution of Indian RPV steel is reported. This study, by virtue of helium ion irradiation at 77, 300 and 573 K, could bring out the effect of the irradiation induced defects on microstructural and mechanical property changes at different stages of their existence starting from the state of cascade damage till the point of their free migration. Irradiation experiments were performed with varying ion energies to achieve nearly uniform irradiation damage of 0.05, 0.2 and 3 dpa in a ~ 300 nm wide region. Irradiated samples were characterized using GIXRD, PAS, TEM and nanoindentation. Unirradiated samples showed predominant presence of a combination of di- and tri-vacancy type of defects. Most of the dislocations present in unirradiated samples were screw dislocations, while mixed type was noticed upon irradiation irrespective of the irradiation temperature. PAS study showed formation of distinct defect types at different irradiation temperatures. TEM study confirmed formation of dislocation loops and defect clusters on irradiation. Higher irradiation temperatures resulted in the extension of the width of the damage region owing to increased migration of defects.

2.
Dalton Trans ; 50(43): 15730-15742, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34698746

RESUMO

The air stable tin(IV) complex [Me2Sn{2-SeC5H2(Me-4,6)2N}2] has been synthesized, characterized by NMR, elemental analysis, and single crystal XRD, and employed as a single source molecular precursor (SSP) for the facile synthesis of orthorhombic SnSe nanosheets. The crystal structure, phase purity, morphology and band gap of the nanosheets were investigated by pXRD, EDS, electron microscopy and diffuse reflectance spectroscopy techniques, respectively. It was found that the preferential orientation of planes and the morphology of the nanosheets rely upon the reaction conditions. The band gaps of the nanosheets were blue shifted with respect to the bulk band gap of the material. The synthesized SnSe nanosheets have been employed as an anode material in lithium ion batteries (LIBs). The material exhibits an initial specific capacity of 1134 mA h g-1 at a current density of 50 mA g-1 and was found to retain a capacity of 380 mA h g-1 even after 70 cycles with 100% efficiency.

3.
Dalton Trans ; 50(37): 13073-13085, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34581340

RESUMO

New air and moisture stable di-tert-butyltin complexes derived from 2-mercaptopyridine (HSpy), [tBu2Sn(Spy)2], [tBu2Sn(Cl)(Spy)] and 4,6-dimethyl-2-mercaptopyrimidine (HSpymMe2) [tBu2Sn(Cl)(SpymMe2)], have been prepared and utilized as single-source molecular precursors for the preparation of orthorhombic SnS nanoplatelets by a hot injection method and thin films by aerosol assisted chemical vapour deposition (AACVD). The complexes were characterized by NMR (1H, 13C, 119Sn) and elemental analysis and their structures were unambiguously established by the single crystal X-ray diffraction technique. Thermolysis of these complexes in oleylamine (OAm) produced SnS nanoplatelets. The morphologies, elemental compositions, phase purity and crystal structures of the resulting Oam-capped nanoplatelets were determined by electron microscopy (SEM, TEM), energy dispersive X-ray spectroscopy (EDS) and pXRD, while the band gaps of the nanoplatelets were evaluated by diffuse reflectance spectroscopy (DRS) and were blue shifted relative to the bulk material. The morphology and preferential growth of the nanoplatelets were found to be significantly altered by the nature of the molecular precursor employed. The synthesized SnS nanoplatelets were evaluated for their performance as anode material for lithium ion batteries (LIBs). A cell comprised of an SnS electrode could be cycled for 50 cycles. The rate capability of SnS was investigated at different current densities in the range 0.1 to 0.7 A g-1 which revealed that the initial capacity could be regained.

4.
J Synchrotron Radiat ; 28(Pt 1): 240-246, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33399574

RESUMO

In the present work, extended X-ray absorption fine-structure (EXAFS) investigations of Co69FexSi21-xB10 (x = 3, 5, 7) glassy ribbons were performed at the Co K-edge. The magnitude of the first peak of the Fourier transforms of the EXAFS signals is found to increase monotonically with increasing Si concentrations indicating the formation of the localized ordered structure at the atomic scale. The Co-Si coordination number (CN) increases at the expense of the CN of Co/Fe. Smaller interatomic distances are observed in the glassy phase compared with that in the crystalline phase which promotes the stability of the glassy phase. Calculations of the thermodynamic parameter (PHSS), cohesive energy (EC) and the atomic radius difference (δ) parameter show that the alloy composition Co69Fe3Si18B10 has a good glass-forming ability (GFA) with the highest CN of Si compared with other compositions. A linear correlation of CN with that of the GFA parameter (PHSS) exists and the CN also plays a crucial role in the GFA of the glassy alloys. This parameter should be considered in developing different GFA criteria.

5.
Curr Top Microbiol Immunol ; 210: 25-37, 1996.
Artigo em Inglês | MEDLINE | ID: mdl-8565563

RESUMO

The chemical and biomechanical properties of explanted implants whose time of implantation ranged from zero to 21 years were measured. The properties appear to decrease with time. However it is important to note that proper controls have yet to be tested. The consistency of the gel varied considerably with manufacturer and date of manufacture. The data will be correlated with control samples when they become available. The data are consistent with the hypothesis that in some instances, the gel does affect the cross-linking, i.e., strength, of the silicone rubber shell. At the present time only a limited number of samples have been tested in this on-going program. One of our major objectives, to determine the influence of the physiological environment of the human body on the durability of the silicone implant, has yet to be quantified.


Assuntos
Implantes de Mama , Silicones/química , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...